# Copyright (c) Facebook, Inc. and its affiliates. import math import numpy as np from unittest import TestCase import torch from fvcore.common.param_scheduler import CosineParamScheduler, MultiStepParamScheduler from torch import nn from detectron2.solver import LRMultiplier, WarmupParamScheduler, build_lr_scheduler class TestScheduler(TestCase): def test_warmup_multistep(self): p = nn.Parameter(torch.zeros(0)) opt = torch.optim.SGD([p], lr=5) multiplier = WarmupParamScheduler( MultiStepParamScheduler( [1, 0.1, 0.01, 0.001], milestones=[10, 15, 20], num_updates=30, ), 0.001, 5 / 30, ) sched = LRMultiplier(opt, multiplier, 30) # This is an equivalent of: # sched = WarmupMultiStepLR( # opt, milestones=[10, 15, 20], gamma=0.1, warmup_factor=0.001, warmup_iters=5) p.sum().backward() opt.step() lrs = [0.005] for _ in range(30): sched.step() lrs.append(opt.param_groups[0]["lr"]) self.assertTrue(np.allclose(lrs[:5], [0.005, 1.004, 2.003, 3.002, 4.001])) self.assertTrue(np.allclose(lrs[5:10], 5.0)) self.assertTrue(np.allclose(lrs[10:15], 0.5)) self.assertTrue(np.allclose(lrs[15:20], 0.05)) self.assertTrue(np.allclose(lrs[20:], 0.005)) def test_warmup_cosine(self): p = nn.Parameter(torch.zeros(0)) opt = torch.optim.SGD([p], lr=5) multiplier = WarmupParamScheduler( CosineParamScheduler(1, 0), 0.001, 5 / 30, ) sched = LRMultiplier(opt, multiplier, 30) p.sum().backward() opt.step() self.assertEqual(opt.param_groups[0]["lr"], 0.005) lrs = [0.005] for _ in range(30): sched.step() lrs.append(opt.param_groups[0]["lr"]) for idx, lr in enumerate(lrs): expected_cosine = 2.5 * (1.0 + math.cos(math.pi * idx / 30)) if idx >= 5: self.assertAlmostEqual(lr, expected_cosine) else: self.assertNotAlmostEqual(lr, expected_cosine) def test_warmup_cosine_end_value(self): from detectron2.config import CfgNode, get_cfg def _test_end_value(cfg_dict): cfg = get_cfg() cfg.merge_from_other_cfg(CfgNode(cfg_dict)) p = nn.Parameter(torch.zeros(0)) opt = torch.optim.SGD([p], lr=cfg.SOLVER.BASE_LR) scheduler = build_lr_scheduler(cfg, opt) p.sum().backward() opt.step() self.assertEqual( opt.param_groups[0]["lr"], cfg.SOLVER.BASE_LR * cfg.SOLVER.WARMUP_FACTOR ) lrs = [] for _ in range(cfg.SOLVER.MAX_ITER): scheduler.step() lrs.append(opt.param_groups[0]["lr"]) self.assertAlmostEqual(lrs[-1], cfg.SOLVER.BASE_LR_END) _test_end_value( { "SOLVER": { "LR_SCHEDULER_NAME": "WarmupCosineLR", "MAX_ITER": 100, "WARMUP_ITERS": 10, "WARMUP_FACTOR": 0.1, "BASE_LR": 5.0, "BASE_LR_END": 0.0, } } ) _test_end_value( { "SOLVER": { "LR_SCHEDULER_NAME": "WarmupCosineLR", "MAX_ITER": 100, "WARMUP_ITERS": 10, "WARMUP_FACTOR": 0.1, "BASE_LR": 5.0, "BASE_LR_END": 0.5, } } )