import logging import os from fvcore.common.timer import Timer from detectron2.structures import BoxMode from fvcore.common.file_io import PathManager from detectron2.data import DatasetCatalog, MetadataCatalog from lvis import LVIS logger = logging.getLogger(__name__) __all__ = ["load_o365_json", "register_o365_instances"] def register_o365_instances(name, metadata, json_file, image_root): DatasetCatalog.register(name, lambda: load_o365_json( json_file, image_root, name)) MetadataCatalog.get(name).set( json_file=json_file, image_root=image_root, evaluator_type="lvis", **metadata ) def get_o365_meta(): categories = [{'supercategory': 'object', 'id': 1, 'name': 'object'}] o365_categories = sorted(categories, key=lambda x: x["id"]) thing_classes = [k["name"] for k in o365_categories] meta = {"thing_classes": thing_classes} return meta def load_o365_json(json_file, image_root, dataset_name=None): ''' Load Object365 class name text for object description for GRiT ''' json_file = PathManager.get_local_path(json_file) timer = Timer() lvis_api = LVIS(json_file) if timer.seconds() > 1: logger.info("Loading {} takes {:.2f} seconds.".format( json_file, timer.seconds())) class_names = {} sort_cat = sorted(lvis_api.dataset['categories'], key=lambda x: x['id']) for x in sort_cat: if '/' in x['name']: text = '' for xx in x['name'].split('/'): text += xx text += ' ' text = text[:-1] else: text = x['name'] class_names[x['id']] = text img_ids = sorted(lvis_api.imgs.keys()) imgs = lvis_api.load_imgs(img_ids) anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids] ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image] assert len(set(ann_ids)) == len(ann_ids), \ "Annotation ids in '{}' are not unique".format(json_file) imgs_anns = list(zip(imgs, anns)) logger.info("Loaded {} images in the LVIS v1 format from {}".format( len(imgs_anns), json_file)) dataset_dicts = [] for (img_dict, anno_dict_list) in imgs_anns: record = {} if "file_name" in img_dict: file_name = img_dict["file_name"] record["file_name"] = os.path.join(image_root, file_name) record["height"] = int(img_dict["height"]) record["width"] = int(img_dict["width"]) image_id = record["image_id"] = img_dict["id"] objs = [] for anno in anno_dict_list: assert anno["image_id"] == image_id if anno.get('iscrowd', 0) > 0: continue obj = {"bbox": anno["bbox"], "bbox_mode": BoxMode.XYWH_ABS} obj["category_id"] = 0 obj["object_description"] = class_names[anno['category_id']] objs.append(obj) record["annotations"] = objs if len(record["annotations"]) == 0: continue record["task"] = "ObjectDet" dataset_dicts.append(record) return dataset_dicts _CUSTOM_SPLITS_LVIS = { "object365_train": ("object365/images/train/", "object365/annotations/train_v1.json"), } for key, (image_root, json_file) in _CUSTOM_SPLITS_LVIS.items(): register_o365_instances( key, get_o365_meta(), os.path.join("datasets", json_file) if "://" not in json_file else json_file, os.path.join("datasets", image_root), )