aaronmat1905 commited on
Commit
2fa70e3
·
verified ·
1 Parent(s): b8e1b9c
Files changed (1) hide show
  1. app.py +29 -52
app.py CHANGED
@@ -1,62 +1,39 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import google.generativeai as genai
4
+
5
+ import kagglehub
6
+ path = kagglehub.dataset_download("fahmidachowdhury/food-adulteration-dataset")
7
+ gemapi = userdata.get("AIzaSyAmDOBWfGuEju0oZyUIcn_H0k8XW0cTP7k")
8
+ genai.configure(api_key = gemapi)
9
+
10
+ import os
11
+ os.listdir(path)
12
+ path = path + "/"+ os.listdir(path)[0]
13
+
14
+
15
+ # Initializing Model:
16
+ system_instruction = f"""
17
+ You are a public assistant who specializes in food safety. You look at data and explain to the user any question they ask; here is your data {str(data.to_json())}\
18
+ You are also a food expert in Indian context. You act as the representative of the Goverment or public agencies always keeping the needs of the people to the forefront.
19
+ You will try to help the customer launch a feedback review whenever they complain. You are to prepare a "markdown" report which is detailed and which can be sent to the company or restaurant.\
20
+ In case of a complaint or a grievance, You will act like a detective gathering necessary information from the user untill you are satisfied; Once You gather all the info, you are supposed to generate a markdown report\
21
+ Once the customer asks you to show them the markdown report, you will use the information given to you to generate a report.\
22
+ You will ask the customer a single question at a time, which is relevent and you will not repeat another question until youve generated the report.
23
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ model_path = "gemini-1.5-flash"
26
+ FoodSafetyAssistant = genai.GenerativeModel(model_path, system_instruction = system_instruction)
27
 
28
+ def startChat(usertxt, chat_history=[]):
29
+ while usertxt != "exit" or usertxt != "Exit":
30
+ chat = FoodSafetyAssistant.start_chat(history = chat_history)
31
+ response = chat.send_message(usertxt)
32
+ yield response.text
33
 
 
 
 
 
 
 
 
 
34
 
 
 
 
 
 
 
 
35
  demo = gr.ChatInterface(
36
+ respond
 
 
 
 
 
 
 
 
 
 
 
 
37
  )
38
 
39