import gradio as gr import requests from pydantic import BaseModel from diffusers.utils import load_image from io import BytesIO sdxl_inference_endpoint = 'https://vikramsingh178-picpilot-server.hf.space/api/v1/product-diffusion/sdxl_v0_lora_inference' sdxl_batch_inference_endpoint = 'https://vikramsingh178-picpilot-server.hf.space/api/v1/product-diffusion/sdxl_v0_lora_inference/batch' kandinsky_inpainting_inference = 'https://vikramsingh178-picpilot-server.hf.space/api/v1/product-diffusion/kandinskyv2.2_inpainting' # Define the InpaintingRequest model class InputRequest(BaseModel): prompt: str num_inference_steps: int guidance_scale: float negative_prompt: str num_images: int mode: str class InpaintingRequest(BaseModel): prompt: str negative_prompt: str num_inference_steps: int strength: float guidance_scale: float mode: str async def generate_sdxl_lora_image(prompt, negative_prompt, num_inference_steps, guidance_scale, num_images, mode): # Prepare the payload for SDXL LORA API payload = InputRequest( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images=num_images, mode=mode ).dict() response = requests.post(sdxl_inference_endpoint, json=payload) response = response.json() url = response['url'] image = load_image(url) return image def generate_outpainting(prompt, negative_prompt, num_inference_steps, strength, guidance_scale, mode, image): # Convert the image to bytes img_byte_arr = BytesIO() image.save(img_byte_arr, format='PNG') img_byte_arr = img_byte_arr.getvalue() # Prepare the payload for multipart/form-data files = { 'image': ('image.png', img_byte_arr, 'image/png'), 'prompt': (None, prompt), 'negative_prompt': (None, negative_prompt), 'num_inference_steps': (None, str(num_inference_steps)), 'strength': (None, str(strength)), 'guidance_scale': (None, str(guidance_scale)), 'mode': (None, mode) } response = requests.post(kandinsky_inpainting_inference, files=files) response.raise_for_status() response = response.json() url = response['url'] image = load_image(url) return image with gr.Blocks(theme='VikramSingh178/Webui-Theme') as demo: with gr.Tab("SdxL-Lora"): with gr.Row(): with gr.Column(): with gr.Group(): prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here") num_inference_steps = gr.Slider(minimum=1, maximum=1000, step=1, value=20, label="Inference Steps") guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.1, value=7.5, label="Guidance Scale") num_images = gr.Slider(minimum=1, maximum=10, step=1, value=1, label="Number of Images") mode = gr.Dropdown(choices=["s3_json", "b64_json"], value="s3_json", label="Mode") generate_button = gr.Button("Generate Image",variant='primary') with gr.Column(scale=1): image_preview = gr.Image(label="Generated Image",show_download_button=True,show_share_button=True,container=True) generate_button.click(generate_sdxl_lora_image, inputs=[prompt, negative_prompt, num_inference_steps, guidance_scale, num_images, mode], outputs=[image_preview]) with gr.Tab("Generate AI Background"): with gr.Row(): with gr.Column(): with gr.Group(): image_input = gr.Image(type="pil", label="Upload Image") prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here") num_inference_steps = gr.Slider(minimum=1, maximum=500, step=1, value=20, label="Inference Steps") guidance_scale = gr.Slider(minimum=1.0, maximum=10.0, step=0.1, value=7.5, label="Guidance Scale") strength = gr.Slider(minimum=0.1, maximum=1, step=0.1, value=1, label="Strength") mode = gr.Dropdown(choices=["s3_json", "b64_json"], value="s3_json", label="Mode") generate_button = gr.Button("Generate Background", variant='primary') with gr.Column(scale=1): image_preview = gr.Image(label="Image", show_download_button=True, show_share_button=True, container=True) generate_button.click(generate_outpainting, inputs=[prompt, negative_prompt, num_inference_steps, strength, guidance_scale, mode, image_input], outputs=[image_preview]) demo.launch()