import streamlit as st import urllib.request import PIL.Image from PIL import Image import requests import fastai from fastai.vision import * from fastai.utils.mem import * from fastai.vision import open_image, load_learner, image, torch import numpy as np from urllib.request import urlretrieve from io import BytesIO import numpy as np import torchvision.transforms as T from PIL import Image,ImageOps,ImageFilter from io import BytesIO import os class FeatureLoss(nn.Module): def __init__(self, m_feat, layer_ids, layer_wgts): super().__init__() self.m_feat = m_feat self.loss_features = [self.m_feat[i] for i in layer_ids] self.hooks = hook_outputs(self.loss_features, detach=False) self.wgts = layer_wgts self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids)) ] + [f'gram_{i}' for i in range(len(layer_ids))] def make_features(self, x, clone=False): self.m_feat(x) return [(o.clone() if clone else o) for o in self.hooks.stored] def forward(self, input, target): out_feat = self.make_features(target, clone=True) in_feat = self.make_features(input) self.feat_losses = [base_loss(input,target)] self.feat_losses += [base_loss(f_in, f_out)*w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)] self.metrics = dict(zip(self.metric_names, self.feat_losses)) return sum(self.feat_losses) def __del__(self): self.hooks.remove() MODEL_URL = "https://www.dropbox.com/s/vxgw0s7ktpla4dk/SkinDeep2.pkl?dl=1" urlretrieve(MODEL_URL, "SkinDeep2.pkl") path = Path(".") learn = load_learner(path, 'SkinDeep2.pkl') def predict(image): img_fast = open_image(image) a = PIL.Image.open(image).convert('RGB') st.image(a, caption='Input') p,img_hr,b = learn.predict(img_fast) x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8) img = PIL.Image.fromarray(x).convert('RGB') return st.image(img, caption='Tattoo') SIDEBAR_OPTION_DEMO_IMAGE = "Select a Demo Image" SIDEBAR_OPTION_UPLOAD_IMAGE = "Upload an Image" SIDEBAR_OPTIONS = [SIDEBAR_OPTION_DEMO_IMAGE, SIDEBAR_OPTION_UPLOAD_IMAGE] app_mode = st.sidebar.selectbox("Please select from the following", SIDEBAR_OPTIONS) photos = ["tatoo.jpg","tattoo2.jpg"] if app_mode == SIDEBAR_OPTION_DEMO_IMAGE: st.sidebar.write(" ------ ") option = st.sidebar.selectbox('Please select a sample image and then click PoP button', photos) pressed = st.sidebar.button('Predict') if pressed: st.empty() st.sidebar.write('Please wait for the magic to happen! This may take up to a minute.') predict(option) elif app_mode == SIDEBAR_OPTION_UPLOAD_IMAGE: uploaded_file = st.file_uploader("Choose an image...") if uploaded_file is not None: pressed = st.sidebar.button('Predict') if pressed: st.empty() st.sidebar.write('Please wait for the magic to happen! This may take up to a minute.') predict(uploaded_file)