import gradio as gr from paths import * import os from vision_tower import DINOv2_MLP from transformers import AutoImageProcessor import torch from inference import * from utils import * from huggingface_hub import hf_hub_download ckpt_path = hf_hub_download(repo_id="Viglong/Orient-Anything", filename="croplargeEX03/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True) print(ckpt_path) save_path = './' device = 'cpu' dino = DINOv2_MLP( dino_mode = 'large', in_dim = 1024, out_dim = 360+180+180+2, evaluate = True, mask_dino = False, frozen_back = False ) dino.eval() print('model create') dino.load_state_dict(torch.load(ckpt_path, map_location='cpu')) dino = dino.to(device) print('weight loaded') val_preprocess = AutoImageProcessor.from_pretrained(DINO_LARGE, cache_dir='./') def infer_func(img, do_rm_bkg=True, do_infer_aug=False): origin_img = Image.fromarray(img) if do_infer_aug: rm_bkg_img = background_preprocess(origin_img, True) angles = get_3angle_infer_aug(origin_img, rm_bkg_img, dino, val_preprocess, device) else: rm_bkg_img = background_preprocess(origin_img, do_rm_bkg) angles = get_3angle(rm_bkg_img, dino, val_preprocess, device) phi = np.radians(angles[0]) theta = np.radians(angles[1]) gamma = angles[2] confidence = float(angles[3]) if confidence > 0.5: render_axis = render_3D_axis(phi, theta, gamma) res_img = overlay_images_with_scaling(render_axis, rm_bkg_img) else: res_img = img # axis_model = "axis.obj" return [res_img, round(float(angles[0]), 2), round(float(angles[1]), 2), round(float(angles[2]), 2), round(float(angles[3]), 2)] example_files = os.listdir('examples') example_files.sort() example_files = [[os.path.join('examples', filename), None, None] for filename in example_files] print(example_files) server = gr.Interface( flagging_mode='never', fn=infer_func, examples=example_files, cache_examples=False, inputs=[ gr.Image(height=512, width=512, label="upload your image"), gr.Checkbox(label="Remove Background", value=True), gr.Checkbox(label="Inference time augmentation", value=False) ], outputs=[ gr.Image(height=512, width=512, label="result image"), # gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model"), gr.Textbox(lines=1, label='Azimuth(0~360°) represents the position of the viewer in the xy plane'), gr.Textbox(lines=1, label='Polar(-90~90°) indicating the height at which the viewer is located'), gr.Textbox(lines=1, label='Rotation(-90~90°) represents the angle of rotation of the viewer'), gr.Textbox(lines=1, label='Confidence(0~1) indicating whether the object has a meaningful orientation') ] ) server.launch()