# Mikel Broström 🔥 Yolo Tracking 🧾 AGPL-3.0 license import numpy as np import torch import time import pandas as pd from ultralytics.utils import ops from ultralytics.engine.results import Results from typing import Union from pathlib import Path import json import shutil import os import sys import git import requests import zipfile import subprocess from git import Repo, exc from boxmot.utils import logger as LOGGER from tqdm import tqdm from boxmot.utils import EXAMPLES, ROOT def split_dataset(src_fldr: Path, percent_to_delete: float = 0.5) -> None: """ Copies the dataset to a new location and removes a specified percentage of images and annotations, adjusting the frame index to start at 1. Args: src_fldr (Path): Source folder containing the dataset. percent_to_delete (float): Percentage of images and annotations to remove. """ # Ensure source path is a Path object src_fldr = Path(src_fldr) # Generate the destination path by replacing "MOT17" with "MOT17-half" in the source path new_benchmark_name = f'MOT17-{int(percent_to_delete * 100)}' dst_fldr = Path(str(src_fldr).replace('MOT17', new_benchmark_name)) # Copy the dataset to a new location manually using pathlib if it doesn't already exist if not dst_fldr.exists(): dst_fldr.mkdir(parents=True) for item in src_fldr.rglob('*'): if item.is_dir(): (dst_fldr / item.relative_to(src_fldr)).mkdir(parents=True, exist_ok=True) else: (dst_fldr / item.relative_to(src_fldr)).write_bytes(item.read_bytes()) # List all sequences in the destination folder seq_paths = [f for f in dst_fldr.iterdir() if f.is_dir()] # Iterate over each sequence and remove a percentage of images and annotations for seq_path in seq_paths: seq_gt_path = seq_path / 'gt' / 'gt.txt' # Check if the gt.txt file exists if not seq_gt_path.exists(): print(f"Ground truth file not found for {seq_path}. Skipping...") continue df = pd.read_csv(seq_gt_path, sep=",", header=None) nr_seq_imgs = df[0].unique().max() split = int(nr_seq_imgs * (1 - percent_to_delete)) # Check if the sequence is already split if nr_seq_imgs <= split: print(f'Sequence {seq_path} already split. Skipping...') continue print(f'Number of annotated frames in {seq_path}: Keeping from frame {split + 1} to {nr_seq_imgs}') # Keep rows from the ground truth file beyond the split point df = df[df[0] > split] # Adjust the frame indices to start from 1 df[0] = df[0] - split df.to_csv(seq_gt_path, header=None, index=None, sep=',') # Remove images before the split point using pathlib jpg_folder_path = seq_path / 'img1' jpg_paths = list(jpg_folder_path.glob('*.jpg')) for jpg_path in jpg_paths: # Extract frame number from image file name (e.g., '000300.jpg' -> 300) frame_number = int(jpg_path.stem) # Check if this frame number is in the removed range if frame_number <= split: jpg_path.unlink() # Rename the remaining images to have a continuous sequence starting from 1 remaining_jpg_paths = sorted(jpg_folder_path.glob('*.jpg')) for new_index, jpg_path in enumerate(remaining_jpg_paths, start=1): new_jpg_name = f"{new_index:06}.jpg" # zero-padded to 6 digits jpg_path.rename(jpg_folder_path / new_jpg_name) remaining_images = len(list(jpg_folder_path.glob('*.jpg'))) print(f'Number of images in {seq_path} after delete: {remaining_images}') return dst_fldr, new_benchmark_name def download_mot_eval_tools(val_tools_path): """ Download the official evaluation tools for MOT metrics from the GitHub repository. Parameters: val_tools_path (Path): Path to the destination folder where the evaluation tools will be downloaded. Returns: None. Clones the evaluation tools repository and updates deprecated numpy types. """ val_tools_url = "https://github.com/JonathonLuiten/TrackEval" try: # Clone the repository Repo.clone_from(val_tools_url, val_tools_path) LOGGER.debug('Official MOT evaluation repo downloaded successfully.') except exc.GitError as err: LOGGER.debug(f'Evaluation repo already downloaded or an error occurred: {err}') # Fix deprecated np.float, np.int & np.bool by replacing them with native Python types deprecated_types = {'np.float': 'float', 'np.int': 'int', 'np.bool': 'bool'} for file_path in val_tools_path.rglob('*'): if file_path.suffix in {'.py', '.txt'}: # only consider .py and .txt files try: content = file_path.read_text(encoding='utf-8') updated_content = content for old_type, new_type in deprecated_types.items(): updated_content = updated_content.replace(old_type, new_type) if updated_content != content: # Only write back if there were changes file_path.write_text(updated_content, encoding='utf-8') LOGGER.info(f'Replaced deprecated types in {file_path}.') except Exception as e: LOGGER.error(f'Error processing {file_path}: {e}') def download_mot_dataset(val_tools_path, benchmark, max_retries=5, backoff_factor=2): """ Download a specific MOT dataset zip file with resumable support and retry logic. Parameters: val_tools_path (Path): Path to the destination folder where the MOT benchmark zip will be downloaded. benchmark (str): The MOT benchmark to download (e.g., 'MOT20', 'MOT17'). max_retries (int): Maximum number of retries for the download in case of failure. backoff_factor (int): Exponential backoff factor for delays between retries. Returns: Path: The path to the downloaded zip file. """ url = f'https://motchallenge.net/data/{benchmark}.zip' zip_dst = val_tools_path / f'{benchmark}.zip' retries = 0 # Initialize retry counter response = None while retries <= max_retries: try: response = requests.head(url, allow_redirects=True) # Consider any status code less than 400 (e.g., 200, 302) as indicating that the resource exists if response.status_code < 400: # Get the total size of the file from the server total_size_in_bytes = int(response.headers.get('content-length', 0)) # Check if there is already a partially or fully downloaded file if zip_dst.exists(): current_size = zip_dst.stat().st_size # If the file is fully downloaded, skip the download if current_size >= total_size_in_bytes: LOGGER.info(f"{benchmark}.zip is already fully downloaded.") return zip_dst # If the file is partially downloaded, set the range header to resume resume_header = {'Range': f'bytes={current_size}-'} LOGGER.info(f"Resuming download for {benchmark}.zip from byte {current_size}...") else: current_size = 0 resume_header = {} # Start or resume the download response = requests.get(url, headers=resume_header, stream=True) response.raise_for_status() # Check for HTTP request errors with open(zip_dst, 'ab') as file, tqdm( desc=zip_dst.name, total=total_size_in_bytes, initial=current_size, unit='iB', unit_scale=True, unit_divisor=1024, ) as bar: for data in response.iter_content(chunk_size=1024): size = file.write(data) bar.update(size) LOGGER.info(f'{benchmark}.zip downloaded successfully.') return zip_dst # If download is successful, return the path else: LOGGER.warning(f'{benchmark} is not downloadable from {url}') return None except (requests.HTTPError, requests.ConnectionError) as e: if response and response.status_code == 416: # Handle "Requested Range Not Satisfiable" error LOGGER.info(f"{benchmark}.zip is already fully downloaded.") return zip_dst LOGGER.error(f'Error occurred while downloading {benchmark}.zip: {e}') retries += 1 wait_time = backoff_factor ** retries LOGGER.info(f"Retrying download in {wait_time} seconds... (Attempt {retries} of {max_retries})") time.sleep(wait_time) # Exponential backoff delay except Exception as e: LOGGER.error(f'An unexpected error occurred: {e}') retries += 1 wait_time = backoff_factor ** retries LOGGER.info(f"Retrying download in {wait_time} seconds... (Attempt {retries} of {max_retries})") time.sleep(wait_time) # Exponential backoff delay LOGGER.error(f"Failed to download {benchmark}.zip after {max_retries} retries.") return None def unzip_mot_dataset(zip_path, val_tools_path, benchmark): """ Unzip a downloaded MOT dataset zip file into the specified directory. Parameters: zip_path (Path): Path to the downloaded MOT benchmark zip file. val_tools_path (Path): Base path to the destination folder where the dataset will be unzipped. benchmark (str): The MOT benchmark that was downloaded (e.g., 'MOT20', 'MOT17'). Returns: None """ if zip_path is None: LOGGER.warning(f'No zip file. Skipping unzipping') return None extract_path = val_tools_path / 'data' / benchmark if not extract_path.exists(): try: with zipfile.ZipFile(zip_path, 'r') as zip_ref: # folder will be called as the original fetched file zip_ref.extractall(val_tools_path / 'data') LOGGER.info(f'{benchmark}.zip unzipped successfully.') except zipfile.BadZipFile: LOGGER.error(f'{zip_path.name} is corrupted. Try deleting the file and run the script again.') except Exception as e: LOGGER.error(f'An error occurred while unzipping {zip_path.name}: {e}') else: LOGGER.info(f'{benchmark} folder already exists.') return extract_path def set_gt_fps(opt, seq_paths): fps_json_filepath = opt.exp_folder_path / 'seqs_frame_nums.json' with open(fps_json_filepath, 'r') as f: seqs_frame_nums = json.load(f) for seq_path in seq_paths: seq_name = seq_path.parent.name frame_nums = seqs_frame_nums[seq_name] gt_dir = seq_path.parent / 'gt' gt_orig_path = gt_dir / 'gt.txt' gt_temp_path = gt_dir / 'gt_temp.txt' shutil.copy(gt_orig_path, gt_temp_path) seq = np.loadtxt(gt_temp_path, delimiter=',') seq_filtered = seq[np.isin(seq[:, 0], frame_nums)] np.savetxt(gt_temp_path, seq_filtered, delimiter=',') def eval_setup(opt, val_tools_path): """ Initializes and sets up evaluation paths for MOT challenge datasets. This function prepares the directories and paths needed for evaluating object tracking algorithms on MOT datasets like MOT17 or custom datasets like MOT17-mini. It filters sequence paths based on the detector (for MOT17), sets up the ground truth, sequences, and results directories according to the provided options. Parameters: - opt: An object with attributes that include benchmark (str), split (str), eval_existing (bool), project (str), and name (str). These options dictate the dataset to use, the split of the dataset, whether to evaluate on an existing setup, and the naming for the project and evaluation results directory. - val_tools_path: A string or Path object pointing to the base directory where the validation tools and datasets are located. Returns: - seq_paths: A list of Path objects pointing to the sequence directories to be evaluated. - save_dir: A Path object pointing to the directory where evaluation results will be saved. - MOT_results_folder: A Path object pointing to the directory where MOT challenge formatted results should be placed. - gt_folder: A Path object pointing to the directory where ground truth data is located. """ # Convert val_tools_path to Path object if it's not already one val_tools_path = Path(val_tools_path) # Initial setup for paths based on benchmark and split options mot_seqs_path = val_tools_path / 'data' / opt.benchmark / opt.split gt_folder = mot_seqs_path # Assuming gt_folder is the same as mot_seqs_path initially # Handling different benchmarks if opt.benchmark == 'MOT17': # Filter for FRCNN sequences in MOT17 seq_paths = [p / 'img1' for p in mot_seqs_path.iterdir() if p.is_dir()] elif opt.benchmark == 'MOT17-mini': # Adjust paths for MOT17-mini base_path = ROOT / 'assets' / opt.benchmark / opt.split mot_seqs_path = gt_folder = base_path seq_paths = [p / 'img1' for p in mot_seqs_path.iterdir() if p.is_dir()] else: # Default handling for other datasets seq_paths = [p / 'img1' for p in mot_seqs_path.iterdir() if p.is_dir()] # Set FPS for GT files set_gt_fps(opt, seq_paths) # Determine save directory save_dir = Path(opt.project) / opt.name # Setup MOT results folder MOT_results_folder = val_tools_path / 'data' / 'trackers' / 'mot_challenge' / opt.benchmark / save_dir.name / 'data' MOT_results_folder.mkdir(parents=True, exist_ok=True) # Ensure directory exists return seq_paths, save_dir, MOT_results_folder, gt_folder def convert_to_mot_format(results: Union[Results, np.ndarray], frame_idx: int) -> np.ndarray: """ Converts tracking results for a single frame into MOT challenge format. This function supports inputs as either a custom object with a 'boxes' attribute or a numpy array. For custom object inputs, 'boxes' should contain 'id', 'xyxy', 'conf', and 'cls' sub-attributes. For numpy array inputs, the expected format per row is: (xmin, ymin, xmax, ymax, id, conf, cls). Parameters: - results (Union[Results, np.ndarray]): Tracking results for the current frame. - frame_idx (int): The zero-based index of the frame being processed. Returns: - np.ndarray: An array containing the MOT formatted results for the frame. """ # Check if results are not empty if results.size != 0: if isinstance(results, np.ndarray): # Convert numpy array results to MOT format tlwh = ops.xyxy2ltwh(results[:, 0:4]) frame_idx_column = np.full((results.shape[0], 1), frame_idx, dtype=np.int32) mot_results = np.column_stack(( frame_idx_column, # frame index results[:, 4].astype(np.int32), # track id tlwh.round().astype(np.int32), # top,left,width,height np.ones((results.shape[0], 1), dtype=np.int32), # "not ignored" results[:, 6].astype(np.int32), # class results[:, 5], # confidence (float) )) return mot_results else: # Convert ultralytics results to MOT format num_detections = len(results.boxes) frame_indices = torch.full((num_detections, 1), frame_idx + 1, dtype=torch.int32) not_ignored = torch.ones((num_detections, 1), dtype=torch.int32) mot_results = torch.cat([ frame_indices, # frame index results.boxes.id.unsqueeze(1).astype(np.int32), # track id ops.xyxy2ltwh(results.boxes.xyxy).astype(np.int32), ## top,left,width,height not_ignored, # "not ignored" results.boxes.cls.unsqueeze(1).astype(np.int32), # class results.boxes.conf.unsqueeze(1).astype(np.float32), # confidence (float) ], dim=1) return mot_results.numpy() def write_mot_results(txt_path: Path, mot_results: np.ndarray) -> None: """ Writes the MOT challenge formatted results to a text file. Parameters: - txt_path (Path): The path to the text file where results are saved. - mot_results (np.ndarray): An array containing the MOT formatted results. Note: The text file will be created if it does not exist, and the directory path to the file will be created as well if necessary. """ if mot_results is not None: # Ensure the parent directory of the txt_path exists txt_path.parent.mkdir(parents=True, exist_ok=True) # Ensure the file exists before opening txt_path.touch(exist_ok=True) if mot_results.size != 0: # Open the file in append mode and save the MOT results with open(str(txt_path), 'a') as file: np.savetxt(file, mot_results, fmt='%d,%d,%d,%d,%d,%d,%d,%d,%.6f')