# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py import os import sys sys.path.append(os.path.split(sys.path[0])[0]) from dataclasses import dataclass from typing import Optional import math import torch import torch.nn.functional as F from torch import nn from copy import deepcopy from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.utils import BaseOutput from diffusers.utils.import_utils import is_xformers_available from diffusers.models.attention import FeedForward, AdaLayerNorm from rotary_embedding_torch import RotaryEmbedding from typing import Callable, Optional from einops import rearrange, repeat try: from diffusers.models.modeling_utils import ModelMixin except: from diffusers.modeling_utils import ModelMixin # 0.11.1 @dataclass class Transformer3DModelOutput(BaseOutput): sample: torch.FloatTensor if is_xformers_available(): import xformers import xformers.ops else: xformers = None def exists(x): return x is not None class CrossAttention(nn.Module): r""" copy from diffuser 0.11.1 A cross attention layer. Parameters: query_dim (`int`): The number of channels in the query. cross_attention_dim (`int`, *optional*): The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. bias (`bool`, *optional*, defaults to False): Set to `True` for the query, key, and value linear layers to contain a bias parameter. """ def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias=False, upcast_attention: bool = False, upcast_softmax: bool = False, added_kv_proj_dim: Optional[int] = None, norm_num_groups: Optional[int] = None, use_relative_position: bool = False, ): super().__init__() # print('num head', heads) inner_dim = dim_head * heads cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.upcast_attention = upcast_attention self.upcast_softmax = upcast_softmax self.scale = dim_head**-0.5 self.heads = heads self.dim_head = dim_head # for slice_size > 0 the attention score computation # is split across the batch axis to save memory # You can set slice_size with `set_attention_slice` self.sliceable_head_dim = heads self._slice_size = None self._use_memory_efficient_attention_xformers = False self.added_kv_proj_dim = added_kv_proj_dim if norm_num_groups is not None: self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) else: self.group_norm = None self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) if self.added_kv_proj_dim is not None: self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(inner_dim, query_dim)) self.to_out.append(nn.Dropout(dropout)) # print(use_relative_position) self.use_relative_position = use_relative_position if self.use_relative_position: self.rotary_emb = RotaryEmbedding(min(32, dim_head)) self.ip_transformed = False self.ip_scale = 1 def ip_transform(self): if self.ip_transformed is not True: self.ip_to_k = deepcopy(self.to_k).to(next(self.parameters()).device) self.ip_to_v = deepcopy(self.to_v).to(next(self.parameters()).device) self.ip_transformed = True def ip_train_set(self): if self.ip_transformed is True: self.ip_to_k.requires_grad_(True) self.ip_to_v.requires_grad_(True) def set_scale(self, scale): self.ip_scale = scale def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def reshape_for_scores(self, tensor): # split heads and dims # tensor should be [b (h w)] f (d nd) batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).contiguous() return tensor def same_batch_dim_to_heads(self, tensor): batch_size, head_size, seq_len, dim = tensor.shape # [b (h w)] nd f d tensor = tensor.reshape(batch_size, seq_len, dim * head_size) return tensor def set_attention_slice(self, slice_size): if slice_size is not None and slice_size > self.sliceable_head_dim: raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") self._slice_size = slice_size def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None, ip_hidden_states=None): batch_size, sequence_length, _ = hidden_states.shape encoder_hidden_states = encoder_hidden_states if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) # [b (h w)] f (nd * d) dim = query.shape[-1] if not self.use_relative_position: query = self.reshape_heads_to_batch_dim(query) # [b (h w) nd] f d if self.added_kv_proj_dim is not None: key = self.to_k(hidden_states) value = self.to_v(hidden_states) encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) else: encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) if not self.use_relative_position: key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if self.ip_transformed is True and ip_hidden_states is not None: # print(ip_hidden_states.dtype) # print(self.ip_to_k.weight.dtype) ip_key = self.ip_to_k(ip_hidden_states) ip_value = self.ip_to_v(ip_hidden_states) if not self.use_relative_position: ip_key = self.reshape_heads_to_batch_dim(ip_key) ip_value = self.reshape_heads_to_batch_dim(ip_value) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # attention, what we cannot get enough of if self._use_memory_efficient_attention_xformers: hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) if self.ip_transformed is True and ip_hidden_states is not None: ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, attention_mask) ip_hidden_states = ip_hidden_states.to(query.dtype) else: if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask) if self.ip_transformed is True and ip_hidden_states is not None: ip_hidden_states = self._attention(query, ip_key, ip_value, attention_mask) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) if self.ip_transformed is True and ip_hidden_states is not None: ip_hidden_states = self._sliced_attention(query, ip_key, ip_value, sequence_length, dim, attention_mask) if self.ip_transformed is True and ip_hidden_states is not None: hidden_states = hidden_states + self.ip_scale * ip_hidden_states # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states def _attention(self, query, key, value, attention_mask=None): if self.upcast_attention: query = query.float() key = key.float() attention_scores = torch.baddbmm( torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), query, key.transpose(-1, -2), beta=0, alpha=self.scale, ) if attention_mask is not None: attention_scores = attention_scores + attention_mask if self.upcast_softmax: attention_scores = attention_scores.float() attention_probs = attention_scores.softmax(dim=-1) attention_probs = attention_probs.to(value.dtype) hidden_states = torch.bmm(attention_probs, value) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): batch_size_attention = query.shape[0] hidden_states = torch.zeros( (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype ) slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] for i in range(hidden_states.shape[0] // slice_size): start_idx = i * slice_size end_idx = (i + 1) * slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] if self.upcast_attention: query_slice = query_slice.float() key_slice = key_slice.float() attn_slice = torch.baddbmm( torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), query_slice, key_slice.transpose(-1, -2), beta=0, alpha=self.scale, ) if attention_mask is not None: attn_slice = attn_slice + attention_mask[start_idx:end_idx] if self.upcast_softmax: attn_slice = attn_slice.float() attn_slice = attn_slice.softmax(dim=-1) # cast back to the original dtype attn_slice = attn_slice.to(value.dtype) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): # TODO attention_mask query = query.contiguous() key = key.contiguous() value = value.contiguous() hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states class Transformer3DModel(ModelMixin, ConfigMixin): @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, use_first_frame: bool = False, use_relative_position: bool = False, rotary_emb: bool = None, ): super().__init__() self.use_linear_projection = use_linear_projection self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim # Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) # Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, use_first_frame=use_first_frame, use_relative_position=use_relative_position, rotary_emb=rotary_emb, ) for d in range(num_layers) ] ) # 4. Define output layers if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, use_image_num=None, return_dict: bool = True, ip_hidden_states=None, encoder_temporal_hidden_states=None): # Input # if ip_hidden_states is not None: # ip_hidden_states = ip_hidden_states.to(dtype=encoder_hidden_states.dtype) # print(ip_hidden_states.shape) # print(encoder_hidden_states.shape) assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." if self.training: video_length = hidden_states.shape[2] - use_image_num hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous() encoder_hidden_states_length = encoder_hidden_states.shape[1] encoder_hidden_states_video = encoder_hidden_states[:, :encoder_hidden_states_length - use_image_num, ...] encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b m n c -> b (m f) n c', f=video_length).contiguous() encoder_hidden_states_image = encoder_hidden_states[:, encoder_hidden_states_length - use_image_num:, ...] encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1) encoder_hidden_states = rearrange(encoder_hidden_states, 'b m n c -> (b m) n c').contiguous() if ip_hidden_states is not None: ip_hidden_states_length = ip_hidden_states.shape[1] ip_hidden_states_video = ip_hidden_states[:, :ip_hidden_states_length - use_image_num, ...] ip_hidden_states_video = repeat(ip_hidden_states_video, 'b m n c -> b (m f) n c', f=video_length).contiguous() ip_hidden_states_image = ip_hidden_states[:, ip_hidden_states_length - use_image_num:, ...] ip_hidden_states = torch.cat([ip_hidden_states_video, ip_hidden_states_image], dim=1) ip_hidden_states = rearrange(ip_hidden_states, 'b m n c -> (b m) n c').contiguous() else: video_length = hidden_states.shape[2] hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous() encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length).contiguous() if encoder_temporal_hidden_states is not None: encoder_temporal_hidden_states = repeat(encoder_temporal_hidden_states, 'b n c -> (b f) n c', f=video_length).contiguous() if ip_hidden_states is not None: ip_hidden_states = repeat(ip_hidden_states, 'b 1 n c -> (b f) n c', f=video_length).contiguous() batch, channel, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, video_length=video_length, use_image_num=use_image_num, ip_hidden_states=ip_hidden_states, encoder_temporal_hidden_states=encoder_temporal_hidden_states ) # Output if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() ) output = hidden_states + residual output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length + use_image_num).contiguous() if not return_dict: return (output,) return Transformer3DModelOutput(sample=output) class BasicTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, attention_bias: bool = False, only_cross_attention: bool = False, upcast_attention: bool = False, use_first_frame: bool = False, use_relative_position: bool = False, rotary_emb: bool = False, ): super().__init__() self.only_cross_attention = only_cross_attention # print(only_cross_attention) self.use_ada_layer_norm = num_embeds_ada_norm is not None # print(self.use_ada_layer_norm) self.use_first_frame = use_first_frame self.dim = dim self.cross_attention_dim = cross_attention_dim self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.dropout = dropout self.attention_bias = attention_bias self.upcast_attention = upcast_attention # Spatial-Attn self.attn1 = CrossAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, upcast_attention=upcast_attention, ) self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) # Text Cross-Attn if cross_attention_dim is not None: self.attn2 = CrossAttention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, upcast_attention=upcast_attention, ) else: self.attn2 = None if cross_attention_dim is not None: self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) else: self.norm2 = None # Temp self.attn_temp = TemporalAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, upcast_attention=upcast_attention, rotary_emb=rotary_emb, ) self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) nn.init.zeros_(self.attn_temp.to_out[0].weight.data) # Feed-forward self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) self.norm3 = nn.LayerNorm(dim) self.tca_transformed = False def tca_transform(self): if self.tca_transformed is not True: self.cross_attn_temp = CrossAttention( query_dim=self.dim * 16, cross_attention_dim=self.cross_attention_dim, heads=self.num_attention_heads, dim_head=self.attention_head_dim, dropout=self.dropout, bias=self.attention_bias, upcast_attention=self.upcast_attention, ) self.cross_norm_temp = AdaLayerNorm(self.dim * 16, self.num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(self.dim * 16) nn.init.zeros_(self.cross_attn_temp.to_out[0].weight.data) self.tca_transformed = True def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, op=None): if not is_xformers_available(): print("Here is how to install it") raise ModuleNotFoundError( "Refer to https://github.com/facebookresearch/xformers for more information on how to install" " xformers", name="xformers", ) elif not torch.cuda.is_available(): raise ValueError( "torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" " available for GPU " ) else: try: # Make sure we can run the memory efficient attention _ = xformers.ops.memory_efficient_attention( torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), torch.randn((1, 2, 40), device="cuda"), ) except Exception as e: raise e self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers if self.attn2 is not None: self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None, use_image_num=None, ip_hidden_states=None, encoder_temporal_hidden_states=None): # SparseCausal-Attention norm_hidden_states = ( self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) ) if self.only_cross_attention: hidden_states = ( self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states ) else: hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, use_image_num=use_image_num) + hidden_states if self.attn2 is not None: # Cross-Attention norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) hidden_states = ( self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, ip_hidden_states=ip_hidden_states ) + hidden_states ) # Temporal Attention if self.training: d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous() hidden_states_video = hidden_states[:, :video_length, :] hidden_states_image = hidden_states[:, video_length:, :] norm_hidden_states_video = ( self.norm_temp(hidden_states_video, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states_video) ) hidden_states_video = self.attn_temp(norm_hidden_states_video) + hidden_states_video # Temporal Cross Attention if self.tca_transformed is True: hidden_states_video = rearrange(hidden_states_video, "(b d) f c -> b d (f c)", d=d).contiguous() norm_hidden_states_video = ( self.cross_norm_temp(hidden_states_video, timestep) if self.use_ada_layer_norm else self.cross_norm_temp(hidden_states_video) ) temp_encoder_hidden_states = rearrange(encoder_hidden_states, "(b f) d c -> b f d c", f=video_length + use_image_num).contiguous() temp_encoder_hidden_states = temp_encoder_hidden_states[:, 0:1].squeeze(dim=1) hidden_states_video = self.cross_attn_temp(norm_hidden_states_video, encoder_hidden_states=temp_encoder_hidden_states, attention_mask=attention_mask) + hidden_states_video hidden_states_video = rearrange(hidden_states_video, "b d (f c) -> (b d) f c", f=video_length).contiguous() hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous() else: d = hidden_states.shape[1] hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length + use_image_num).contiguous() norm_hidden_states = ( self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) ) hidden_states = self.attn_temp(norm_hidden_states) + hidden_states # Temporal Cross Attention if self.tca_transformed is True: hidden_states = rearrange(hidden_states, "(b d) f c -> b d (f c)", d=d).contiguous() norm_hidden_states = ( self.cross_norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.cross_norm_temp(hidden_states) ) if encoder_temporal_hidden_states is not None: encoder_hidden_states = encoder_temporal_hidden_states temp_encoder_hidden_states = rearrange(encoder_hidden_states, "(b f) d c -> b f d c", f=video_length + use_image_num).contiguous() temp_encoder_hidden_states = temp_encoder_hidden_states[:, 0:1].squeeze(dim=1) hidden_states = self.cross_attn_temp(norm_hidden_states, encoder_hidden_states=temp_encoder_hidden_states, attention_mask=attention_mask) + hidden_states hidden_states = rearrange(hidden_states, "b d (f c) -> (b f) d c", f=video_length + use_image_num, d=d).contiguous() else: hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d).contiguous() # Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states class SparseCausalAttention(CrossAttention): def forward_video(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): batch_size, sequence_length, _ = hidden_states.shape encoder_hidden_states = encoder_hidden_states if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) dim = query.shape[-1] query = self.reshape_heads_to_batch_dim(query) if self.added_kv_proj_dim is not None: raise NotImplementedError encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) former_frame_index = torch.arange(video_length) - 1 former_frame_index[0] = 0 key = rearrange(key, "(b f) d c -> b f d c", f=video_length).contiguous() key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2) key = rearrange(key, "b f d c -> (b f) d c").contiguous() value = rearrange(value, "(b f) d c -> b f d c", f=video_length).contiguous() value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2) value = rearrange(value, "b f d c -> (b f) d c").contiguous() key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # attention, what we cannot get enough of if self._use_memory_efficient_attention_xformers: hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) else: if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states def forward_image(self, hidden_states, encoder_hidden_states=None, attention_mask=None, use_image_num=None): batch_size, sequence_length, _ = hidden_states.shape encoder_hidden_states = encoder_hidden_states if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) # [b (h w)] f (nd * d) dim = query.shape[-1] if not self.use_relative_position: query = self.reshape_heads_to_batch_dim(query) # [b (h w) nd] f d if self.added_kv_proj_dim is not None: key = self.to_k(hidden_states) value = self.to_v(hidden_states) encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) else: encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) if not self.use_relative_position: key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # attention, what we cannot get enough of if self._use_memory_efficient_attention_xformers: hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) else: if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None, use_image_num=None): if self.training: # print(use_image_num) hidden_states = rearrange(hidden_states, "(b f) d c -> b f d c", f=video_length + use_image_num).contiguous() hidden_states_video = hidden_states[:, :video_length, ...] hidden_states_image = hidden_states[:, video_length:, ...] hidden_states_video = rearrange(hidden_states_video, 'b f d c -> (b f) d c').contiguous() hidden_states_image = rearrange(hidden_states_image, 'b f d c -> (b f) d c').contiguous() hidden_states_video = self.forward_video(hidden_states=hidden_states_video, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, video_length=video_length) hidden_states_image = self.forward_image(hidden_states=hidden_states_image, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask) hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=0) return hidden_states # exit() else: return self.forward_video(hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask, video_length=video_length) class TemporalAttention(CrossAttention): def __init__(self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: float = 0.0, bias=False, upcast_attention: bool = False, upcast_softmax: bool = False, added_kv_proj_dim: Optional[int] = None, norm_num_groups: Optional[int] = None, rotary_emb=None): super().__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax, added_kv_proj_dim, norm_num_groups) # relative time positional embeddings self.time_rel_pos_bias = RelativePositionBias(heads=heads, max_distance=32) # realistically will not be able to generate that many frames of video... yet self.rotary_emb = rotary_emb def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): time_rel_pos_bias = self.time_rel_pos_bias(hidden_states.shape[1], device=hidden_states.device) batch_size, sequence_length, _ = hidden_states.shape encoder_hidden_states = encoder_hidden_states if self.group_norm is not None: hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = self.to_q(hidden_states) # [b (h w)] f (nd * d) dim = query.shape[-1] if self.added_kv_proj_dim is not None: key = self.to_k(hidden_states) value = self.to_v(hidden_states) encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) else: encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states key = self.to_k(encoder_hidden_states) value = self.to_v(encoder_hidden_states) if attention_mask is not None: if attention_mask.shape[-1] != query.shape[1]: target_length = query.shape[1] attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) # attention, what we cannot get enough of if self._use_memory_efficient_attention_xformers: hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) # Some versions of xformers return output in fp32, cast it back to the dtype of the input hidden_states = hidden_states.to(query.dtype) else: if self._slice_size is None or query.shape[0] // self._slice_size == 1: hidden_states = self._attention(query, key, value, attention_mask, time_rel_pos_bias) else: hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) # linear proj hidden_states = self.to_out[0](hidden_states) # dropout hidden_states = self.to_out[1](hidden_states) return hidden_states def _attention(self, query, key, value, attention_mask=None, time_rel_pos_bias=None): if self.upcast_attention: query = query.float() key = key.float() query = self.scale * rearrange(query, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads key = rearrange(key, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads value = rearrange(value, 'b f (h d) -> b h f d', h=self.heads) # d: dim_head; n: heads # torch.baddbmm only accepte 3-D tensor # https://runebook.dev/zh/docs/pytorch/generated/torch.baddbmm # attention_scores = self.scale * torch.matmul(query, key.transpose(-1, -2)) if exists(self.rotary_emb): query = self.rotary_emb.rotate_queries_or_keys(query) key = self.rotary_emb.rotate_queries_or_keys(key) attention_scores = torch.einsum('... h i d, ... h j d -> ... h i j', query, key) attention_scores = attention_scores + time_rel_pos_bias if attention_mask is not None: # add attention mask attention_scores = attention_scores + attention_mask # vdm attention_scores = attention_scores - attention_scores.amax(dim = -1, keepdim = True).detach() attention_probs = nn.functional.softmax(attention_scores, dim=-1) # print(attention_probs[0][0]) # cast back to the original dtype attention_probs = attention_probs.to(value.dtype) # compute attention output hidden_states = torch.einsum('... h i j, ... h j d -> ... h i d', attention_probs, value) hidden_states = rearrange(hidden_states, 'b h f d -> b f (h d)') return hidden_states class RelativePositionBias(nn.Module): def __init__( self, heads=8, num_buckets=32, max_distance=128, ): super().__init__() self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): ret = 0 n = -relative_position num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, n, device): q_pos = torch.arange(n, dtype = torch.long, device = device) k_pos = torch.arange(n, dtype = torch.long, device = device) rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) return rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames