import torch import torch.nn as nn import math import timm from timm.models.layers import trunc_normal_ from timm.models.vision_transformer import PatchEmbed, Mlp # assert timm.__version__ == "0.3.2" # version checks import einops import torch.utils.checkpoint # the xformers lib allows less memory, faster training and inference try: import xformers import xformers.ops except: XFORMERS_IS_AVAILBLE = False # print('xformers disabled') def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def patchify(imgs, patch_size): x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size) return x def unpatchify(x, channels=3): patch_size = int((x.shape[2] // channels) ** 0.5) h = w = int(x.shape[1] ** .5) assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2] x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, L, C = x.shape qkv = self.qkv(x) if XFORMERS_IS_AVAILBLE: # the xformers lib allows less memory, faster training and inference qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads) q, k, v = qkv[0], qkv[1], qkv[2] # B L H D x = xformers.ops.memory_efficient_attention(q, k, v) x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads) else: qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads) q, k, v = qkv[0], qkv[1], qkv[2] # B H L D attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, L, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale) self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer) self.skip_linear = nn.Linear(2 * dim, dim) if skip else None self.use_checkpoint = use_checkpoint def forward(self, x, skip=None): if self.use_checkpoint: return torch.utils.checkpoint.checkpoint(self._forward, x, skip) else: return self._forward(x, skip) def _forward(self, x, skip=None): if self.skip_linear is not None: # print('x shape', x.shape) # print('skip shape', skip.shape) # exit() x = self.skip_linear(torch.cat([x, skip], dim=-1)) x = x + self.attn(self.norm1(x)) x = x + self.mlp(self.norm2(x)) return x class UViT(nn.Module): def __init__(self, input_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, mlp_time_embed=False, num_classes=-1, use_checkpoint=False, conv=True, skip=True, num_frames=16, class_guided=False, use_lora=False): super().__init__() self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_classes = num_classes self.in_chans = in_chans self.patch_embed = PatchEmbed( img_size=input_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.time_embed = nn.Sequential( nn.Linear(embed_dim, 4 * embed_dim), nn.SiLU(), nn.Linear(4 * embed_dim, embed_dim), ) if mlp_time_embed else nn.Identity() if self.num_classes > 0: self.label_emb = nn.Embedding(self.num_classes, embed_dim) self.extras = 2 else: self.extras = 1 self.pos_embed = nn.Parameter(torch.zeros(1, self.extras + num_patches, embed_dim)) self.frame_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) self.in_blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer, use_checkpoint=use_checkpoint) for _ in range(depth // 2)]) self.mid_block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer, use_checkpoint=use_checkpoint) self.out_blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint) for _ in range(depth // 2)]) self.norm = norm_layer(embed_dim) self.patch_dim = patch_size ** 2 * in_chans self.decoder_pred = nn.Linear(embed_dim, self.patch_dim, bias=True) self.final_layer = nn.Conv2d(self.in_chans, self.in_chans * 2, 3, padding=1) if conv else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.frame_embed, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed'} def forward_(self, x, timesteps, y=None): x = self.patch_embed(x) # 48, 256, 1152 # print(x.shape) B, L, D = x.shape time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152 # print(time_token.shape) time_token = time_token.unsqueeze(dim=1) # 3, 1, 1152 x = torch.cat((time_token, x), dim=1) if y is not None: label_emb = self.label_emb(y) label_emb = label_emb.unsqueeze(dim=1) x = torch.cat((label_emb, x), dim=1) x = x + self.pos_embed skips = [] for blk in self.in_blocks: x = blk(x) skips.append(x) x = self.mid_block(x) for blk in self.out_blocks: x = blk(x, skips.pop()) x = self.norm(x) x = self.decoder_pred(x) assert x.size(1) == self.extras + L x = x[:, self.extras:, :] x = unpatchify(x, self.in_chans) x = self.final_layer(x) return x def forward(self, x, timesteps, y=None): # print(x.shape) batch, frame, _, _, _ = x.shape # 这里rearrange后每隔f是同一个视频 x = einops.rearrange(x, 'b f c h w -> (b f) c h w') # 3 16 4 256 256 x = self.patch_embed(x) # 48, 256, 1152 B, L, D = x.shape time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim)) # 3, 1152 # timestep_spatial的repeat需要保证每f帧为同一个timesteps time_token_spatial = einops.repeat(time_token, 'n d -> (n c) d', c=frame) # 48, 1152 time_token_spatial = time_token_spatial.unsqueeze(dim=1) # 48, 1, 1152 x = torch.cat((time_token_spatial, x), dim=1) # 48, 257, 1152 if y is not None: label_emb = self.label_emb(y) label_emb = label_emb.unsqueeze(dim=1) x = torch.cat((label_emb, x), dim=1) x = x + self.pos_embed skips = [] for i in range(0, len(self.in_blocks), 2): # print('The {}-th run'.format(i)) spatial_block, time_block = self.in_blocks[i:i+2] x = spatial_block(x) # add time embeddings and conduct attention as frame. x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代表单帧token数; 771, 16, 1152; 771: 3 * 257 skips.append(x) # print(x.shape) if i == 0: x = x + self.frame_embed # 771, 16, 1152 x = time_block(x) x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 257, 1152 skips.append(x) x = self.mid_block(x) for i in range(0, len(self.out_blocks), 2): # print('The {}-th run'.format(i)) spatial_block, time_block = self.out_blocks[i:i+2] x = spatial_block(x, skips.pop()) # add time embeddings and conduct attention as frame. x = einops.rearrange(x, '(b f) t d -> (b t) f d', b=batch) # t 代表单帧token数; 771, 16, 1152; 771: 3 * 257 x = time_block(x, skips.pop()) x = einops.rearrange(x, '(b t) f d -> (b f) t d', b=batch) # 48, 256, 1152 x = self.norm(x) x = self.decoder_pred(x) assert x.size(1) == self.extras + L x = x[:, self.extras:, :] x = unpatchify(x, self.in_chans) x = self.final_layer(x) x = einops.rearrange(x, '(b f) c h w -> b f c h w', b=batch) # print(x.shape) return x def UViT_XL_2(**kwargs): return UViT(patch_size=2, in_chans=4, embed_dim=1152, depth=28, num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=4, use_checkpoint=True, conv=False, **kwargs) def UViT_L_2(**kwargs): return UViT(patch_size=2, in_chans=4, embed_dim=1024, depth=20, num_heads=16, mlp_ratio=4, qkv_bias=False, mlp_time_embed=False, use_checkpoint=True, **kwargs) # 没有L以下的,UViT中L以下的img_size为64 UViT_models = { 'UViT-XL/2': UViT_XL_2, 'UViT-L/2': UViT_L_2 } if __name__ == '__main__': nnet = UViT_XL_2().cuda() imgs = torch.randn(3, 16, 4, 32, 32).cuda() timestpes = torch.tensor([1, 2, 3]).cuda() outputs = nnet(imgs, timestpes) print(outputs.shape)