# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import math import torch import torch.nn as nn import numpy as np from einops import rearrange, repeat from timm.models.vision_transformer import Mlp, PatchEmbed import os import sys # sys.path.append(os.getcwd()) sys.path.append(os.path.split(sys.path[0])[0]) # 代码解释 # sys.path[0] : 得到C:\Users\maxu\Desktop\blog_test\pakage2 # os.path.split(sys.path[0]) : 得到['C:\Users\maxu\Desktop\blog_test',pakage2'] # mmcls 里面跨包引用是因为安装了mmcls # for i in sys.path: # print(i) # the xformers lib allows less memory, faster training and inference try: import xformers import xformers.ops except: XFORMERS_IS_AVAILBLE = False # from timm.models.layers.helpers import to_2tuple # from timm.models.layers.trace_utils import _assert def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Attention Layers from TIMM # ################################################################################# class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., use_lora=False, attention_mode='math'): super().__init__() assert dim % num_heads == 0, 'dim should be divisible by num_heads' self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.attention_mode = attention_mode self.use_lora = use_lora if self.use_lora: self.qkv = lora.MergedLinear(dim, dim * 3, r=500, enable_lora=[True, False, True]) else: self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous() q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple) if self.attention_mode == 'xformers': # cause loss nan while using with amp x = xformers.ops.memory_efficient_attention(q, k, v).reshape(B, N, C) elif self.attention_mode == 'flash': # cause loss nan while using with amp # Optionally use the context manager to ensure one of the fused kerenels is run with torch.backends.cuda.sdp_kernel(enable_math=False): x = torch.nn.functional.scaled_dot_product_attention(q, k, v).reshape(B, N, C) # require pytorch 2.0 elif self.attention_mode == 'math': attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) else: raise NotImplemented x = self.proj(x) x = self.proj_drop(x) return x ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob print(drop_ids) else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) print('******labels******', labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings ################################################################################# # Core DiT Model # ################################################################################# class DiTBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) def forward(self, x, c): shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, patch_size, out_channels): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class DiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_size=32, patch_size=2, in_channels=4, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, num_frames=16, class_dropout_prob=0.1, num_classes=1000, learn_sigma=True, class_guided=False, use_lora=False, attention_mode='math', ): super().__init__() self.learn_sigma = learn_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.class_guided = class_guided self.num_frames = num_frames self.x_embedder = PatchEmbed(input_size, patch_size, in_channels, hidden_size, bias=True) self.t_embedder = TimestepEmbedder(hidden_size) if self.class_guided: self.y_embedder = LabelEmbedder(num_classes, hidden_size, class_dropout_prob) num_patches = self.x_embedder.num_patches # Will use fixed sin-cos embedding: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, hidden_size), requires_grad=False) self.time_embed = nn.Parameter(torch.zeros(1, num_frames, hidden_size), requires_grad=False) if use_lora: self.blocks = nn.ModuleList([ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attention_mode=attention_mode, use_lora=False if num % 2 ==0 else True) for num in range(depth) ]) else: self.blocks = nn.ModuleList([ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, attention_mode=attention_mode) for _ in range(depth) ]) self.final_layer = FinalLayer(hidden_size, patch_size, self.out_channels) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize (and freeze) pos_embed by sin-cos embedding: pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.x_embedder.num_patches ** 0.5)) self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0)) time_embed = get_1d_sincos_time_embed(self.time_embed.shape[-1], self.time_embed.shape[-2]) self.time_embed.data.copy_(torch.from_numpy(time_embed).float().unsqueeze(0)) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) nn.init.constant_(self.x_embedder.proj.bias, 0) if self.class_guided: # Initialize label embedding table: nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def unpatchify(self, x): """ x: (N, T, patch_size**2 * C) imgs: (N, H, W, C) """ c = self.out_channels p = self.x_embedder.patch_size[0] h = w = int(x.shape[1] ** 0.5) assert h * w == x.shape[1] x = x.reshape(shape=(x.shape[0], h, w, p, p, c)) x = torch.einsum('nhwpqc->nchpwq', x) imgs = x.reshape(shape=(x.shape[0], c, h * p, h * p)) return imgs # @torch.cuda.amp.autocast() # @torch.compile def forward(self, x, t, y=None): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ # print('label: {}'.format(y)) batches, frames, channels, high, weight = x.shape # for example, 3, 16, 3, 32, 32 # 这里rearrange后每隔f是同一个视频 x = rearrange(x, 'b f c h w -> (b f) c h w') x = self.x_embedder(x) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(t) # (N, D) # timestep_spatial的repeat需要保证每f帧为同一个timesteps timestep_spatial = repeat(t, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames timestep_time = repeat(t, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens if self.class_guided: y = self.y_embedder(y, self.training) y_spatial = repeat(y, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames y_time = repeat(y, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens # if self.class_guided: # y = self.y_embedder(y, self.training) # (N, D) # c = timestep_spatial + y # else: # c = timestep_spatial # for block in self.blocks: # x = block(x, c) # (N, T, D) for i in range(0, len(self.blocks), 2): # print('The {}-th run'.format(i)) spatial_block, time_block = self.blocks[i:i+2] # print(spatial_block) # print(time_block) # print(x.shape) if self.class_guided: c = timestep_spatial + y_spatial else: c = timestep_spatial x = spatial_block(x, c) # print(c.shape) x = rearrange(x, '(b f) t d -> (b t) f d', b=batches) # t 代表单帧token数; 768, 16, 1152 # Add Time Embedding if i == 0: x = x + self.time_embed # 768, 16, 1152 if self.class_guided: c = timestep_time + y_time else: # timestep_time = repeat(t, 'n d -> (n c) d', c=x.shape[0] // batches) # 768, 1152 # print(timestep_time.shape) c = timestep_time x = time_block(x, c) # print(x.shape) x = rearrange(x, '(b t) f d -> (b f) t d', b=batches) # x = rearrange(x, '(b t) f d -> (b f) t d', b=batches) if self.class_guided: c = timestep_spatial + y_spatial else: c = timestep_spatial x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) x = rearrange(x, '(b f) c h w -> b f c h w', b=batches) # print(x.shape) return x def forward_motion(self, motions, t, base_frame, y=None): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ # print('label: {}'.format(y)) batches, frames, channels, high, weight = motions.shape # for example, 3, 16, 3, 32, 32 # 这里rearrange后每隔f是同一个视频 motions = rearrange(motions, 'b f c h w -> (b f) c h w') motions = self.x_embedder(motions) + self.pos_embed # (N, T, D), where T = H * W / patch_size ** 2 t = self.t_embedder(t) # (N, D) # timestep_spatial的repeat需要保证每f帧为同一个timesteps timestep_spatial = repeat(t, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames timestep_time = repeat(t, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens if self.class_guided: y = self.y_embedder(y, self.training) y_spatial = repeat(y, 'n d -> (n c) d', c=self.time_embed.shape[1]) # 48, 1152; c=num_frames y_time = repeat(y, 'n d -> (n c) d', c=self.pos_embed.shape[1]) # 768, 1152; c=num tokens # if self.class_guided: # y = self.y_embedder(y, self.training) # (N, D) # c = timestep_spatial + y # else: # c = timestep_spatial # for block in self.blocks: # x = block(x, c) # (N, T, D) for i in range(0, len(self.blocks), 2): # print('The {}-th run'.format(i)) spatial_block, time_block = self.blocks[i:i+2] # print(spatial_block) # print(time_block) # print(x.shape) if self.class_guided: c = timestep_spatial + y_spatial else: c = timestep_spatial x = spatial_block(x, c) # print(c.shape) x = rearrange(x, '(b f) t d -> (b t) f d', b=batches) # t 代表单帧token数; 768, 16, 1152 # Add Time Embedding if i == 0: x = x + self.time_embed # 768, 16, 1152 if self.class_guided: c = timestep_time + y_time else: # timestep_time = repeat(t, 'n d -> (n c) d', c=x.shape[0] // batches) # 768, 1152 # print(timestep_time.shape) c = timestep_time x = time_block(x, c) # print(x.shape) x = rearrange(x, '(b t) f d -> (b f) t d', b=batches) # x = rearrange(x, '(b t) f d -> (b f) t d', b=batches) if self.class_guided: c = timestep_spatial + y_spatial else: c = timestep_spatial x = self.final_layer(x, c) # (N, T, patch_size ** 2 * out_channels) x = self.unpatchify(x) # (N, out_channels, H, W) x = rearrange(x, '(b f) c h w -> b f c h w', b=batches) # print(x.shape) return x def forward_with_cfg(self, x, t, y, cfg_scale): """ Forward pass of DiT, but also batches the unconditional forward pass for classifier-free guidance. """ # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb half = x[: len(x) // 2] combined = torch.cat([half, half], dim=0) model_out = self.forward(combined, t, y) # For exact reproducibility reasons, we apply classifier-free guidance on only # three channels by default. The standard approach to cfg applies it to all channels. # This can be done by uncommenting the following line and commenting-out the line following that. # eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] eps, rest = model_out[:, :3], model_out[:, 3:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) return torch.cat([eps, rest], dim=1) ################################################################################# # Sine/Cosine Positional Embedding Functions # ################################################################################# # https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py def get_1d_sincos_time_embed(embed_dim, length): pos = torch.arange(0, length).unsqueeze(1) return get_1d_sincos_pos_embed_from_grid(embed_dim, pos) def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False, extra_tokens=0): """ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) """ grid_h = np.arange(grid_size, dtype=np.float32) grid_w = np.arange(grid_size, dtype=np.float32) grid = np.meshgrid(grid_w, grid_h) # here w goes first grid = np.stack(grid, axis=0) grid = grid.reshape([2, 1, grid_size, grid_size]) pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) if cls_token and extra_tokens > 0: pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) return pos_embed def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): assert embed_dim % 2 == 0 # use half of dimensions to encode grid_h emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) return emb def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): """ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) """ assert embed_dim % 2 == 0 omega = np.arange(embed_dim // 2, dtype=np.float64) omega /= embed_dim / 2. omega = 1. / 10000**omega # (D/2,) pos = pos.reshape(-1) # (M,) out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product emb_sin = np.sin(out) # (M, D/2) emb_cos = np.cos(out) # (M, D/2) emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) return emb ################################################################################# # DiT Configs # ################################################################################# def DiT_XL_2(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) def DiT_XL_4(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) def DiT_XL_8(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) def DiT_L_2(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) def DiT_L_4(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) def DiT_L_8(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) def DiT_B_2(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) def DiT_B_4(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) def DiT_B_8(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def DiT_S_2(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) def DiT_S_4(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) def DiT_S_8(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) DiT_models = { 'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8, 'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8, 'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8, 'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8, } if __name__ == '__main__': import torch device = "cuda" if torch.cuda.is_available() else "cpu" img = torch.randn(3, 16, 4, 32, 32).to(device) t = torch.tensor([1, 2, 3]).to(device) y = torch.tensor([1, 2, 3]).to(device) network = DiT_XL_2().to(device) y_embeder = LabelEmbedder(num_classes=100, hidden_size=768, dropout_prob=0.5).to(device) # lora.mark_only_lora_as_trainable(network) out = y_embeder(y, True) # out = network(img, t, y) print(out.shape)