# SEINE This repository is the official implementation of [SEINE](https://arxiv.org/abs/2310.20700). **[SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction](https://arxiv.org/abs/2310.20700)** [Arxiv Report](https://arxiv.org/abs/2310.20700) | [Project Page](https://vchitect.github.io/SEINE-project/) ## Setups for Inference ### Prepare Environment ``` conda env create -f env.yaml conda activate seine ``` ### Downlaod our model and T2I base model Download our model checkpoint from [Google Drive](https://drive.google.com/drive/folders/1cWfeDzKJhpb0m6HA5DoMOH0_ItuUY95b?usp=sharing) and save to directory of ```pre-trained``` Our model is based on Stable diffusion v1.4, you may download [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) to the director of ``` pre-trained ``` Now under `./pretrained`, you should be able to see the following: ``` ├── pretrained_models │ ├── seine.pt │ ├── stable-diffusion-v1-4 │ │ ├── ... └── └── ├── ... ├── ... ``` #### Inference for I2V ```python python sample_scripts/with_mask_sample.py --config configs/sample_i2v.yaml ``` The generated video will be saved in ```./results/i2v```. #### Inference for Transition ```python python sample_scripts/with_mask_sample.py --config configs/sample_transition.yaml ``` The generated video will be saved in ```./results/transition```. #### More Details You can modify ```./configs/sample_mask.yaml``` to change the generation conditions. For example, ```ckpt``` is used to specify a model checkpoint. ```text_prompt``` is used to describe the content of the video. ```input_path``` is used to specify the path to the image. ## BibTeX ```bibtex @article{chen2023seine, title={SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction}, author={Chen, Xinyuan and Wang, Yaohui and Zhang, Lingjun and Zhuang, Shaobin and Ma, Xin and Yu, Jiashuo and Wang, Yali and Lin, Dahua and Qiao, Yu and Liu, Ziwei}, journal={arXiv preprint arXiv:2310.20700}, year={2023} } ```