import gradio as gr import whisperx audio_model = whisperx.load_model('tiny', 'cpu', compute_type="float32") def generate_answers(audio_q): trans = audio_model.transcribe(audio_q) audio_res = "" for seg in trans['segments']: audio_res += seg['text'] audio_res = audio_res.strip() return audio_res with gr.Blocks() as demo: gr.Markdown( """# Testing wisper """ ) # app GUI with gr.Row(): with gr.Column(): audio_q = gr.Audio(label="Audio Question", value=None, sources=['microphone', 'upload'], type='filepath',show_download_button=True) with gr.Row(): answer = gr.Text(label ='Answer') with gr.Row(): submit = gr.Button("Submit") submit.click(generate_answers, inputs=[audio_q], outputs=[answer]) clear_btn = gr.ClearButton([audio_q, answer]) if __name__ == "__main__": demo.launch(share=True)