import argparse import os import platform import sys from copy import deepcopy from pathlib import Path FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLO root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH if platform.system() != 'Windows': ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import * from models.experimental import * from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args from utils.plots import feature_visualization from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device, time_sync) from utils.tal.anchor_generator import make_anchors, dist2bbox try: import thop # for FLOPs computation except ImportError: thop = None class Detect(nn.Module): # YOLO Detect head for detection models dynamic = False # force grid reconstruction export = False # export mode shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.nl = len(ch) # number of detection layers self.reg_max = 16 self.no = nc + self.reg_max * 4 # number of outputs per anchor self.inplace = inplace # use inplace ops (e.g. slice assignment) self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch) self.cv3 = nn.ModuleList( nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch) self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() def forward(self, x): shape = x[0].shape # BCHW for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) if self.training: return x elif self.dynamic or self.shape != shape: self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) self.shape = shape box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1) dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides y = torch.cat((dbox, cls.sigmoid()), 1) return y if self.export else (y, x) def bias_init(self): # Initialize Detect() biases, WARNING: requires stride availability m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) class DDetect(nn.Module): # YOLO Detect head for detection models dynamic = False # force grid reconstruction export = False # export mode shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.nl = len(ch) # number of detection layers self.reg_max = 16 self.no = nc + self.reg_max * 4 # number of outputs per anchor self.inplace = inplace # use inplace ops (e.g. slice assignment) self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch) self.cv3 = nn.ModuleList( nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch) self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity() def forward(self, x): shape = x[0].shape # BCHW for i in range(self.nl): x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1) if self.training: return x elif self.dynamic or self.shape != shape: self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5)) self.shape = shape box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1) dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides y = torch.cat((dbox, cls.sigmoid()), 1) return y if self.export else (y, x) def bias_init(self): # Initialize Detect() biases, WARNING: requires stride availability m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) class DualDetect(nn.Module): # YOLO Detect head for detection models dynamic = False # force grid reconstruction export = False # export mode shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.nl = len(ch) // 2 # number of detection layers self.reg_max = 16 self.no = nc + self.reg_max * 4 # number of outputs per anchor self.inplace = inplace # use inplace ops (e.g. slice assignment) self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl]) self.cv3 = nn.ModuleList( nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl]) self.cv4 = nn.ModuleList( nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:]) self.cv5 = nn.ModuleList( nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:]) self.dfl = DFL(self.reg_max) self.dfl2 = DFL(self.reg_max) def forward(self, x): shape = x[0].shape # BCHW d1 = [] d2 = [] for i in range(self.nl): d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)) d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1)) if self.training: return [d1, d2] elif self.dynamic or self.shape != shape: self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5)) self.shape = shape box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1) dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1) dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)] return y if self.export else (y, [d1, d2]) def bias_init(self): # Initialize Detect() biases, WARNING: requires stride availability m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) for a, b, s in zip(m.cv4, m.cv5, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) class DualDDetect(nn.Module): # YOLO Detect head for detection models dynamic = False # force grid reconstruction export = False # export mode shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.nl = len(ch) // 2 # number of detection layers self.reg_max = 16 self.no = nc + self.reg_max * 4 # number of outputs per anchor self.inplace = inplace # use inplace ops (e.g. slice assignment) self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl]) self.cv3 = nn.ModuleList( nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl]) self.cv4 = nn.ModuleList( nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:]) self.cv5 = nn.ModuleList( nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:]) self.dfl = DFL(self.reg_max) self.dfl2 = DFL(self.reg_max) def forward(self, x): shape = x[0].shape # BCHW d1 = [] d2 = [] for i in range(self.nl): d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)) d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1)) if self.training: return [d1, d2] elif self.dynamic or self.shape != shape: self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5)) self.shape = shape box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1) dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1) dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)] return y if self.export else (y, [d1, d2]) #y = torch.cat((dbox2, cls2.sigmoid()), 1) #return y if self.export else (y, d2) #y1 = torch.cat((dbox, cls.sigmoid()), 1) #y2 = torch.cat((dbox2, cls2.sigmoid()), 1) #return [y1, y2] if self.export else [(y1, d1), (y2, d2)] #return [y1, y2] if self.export else [(y1, y2), (d1, d2)] def bias_init(self): # Initialize Detect() biases, WARNING: requires stride availability m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) for a, b, s in zip(m.cv4, m.cv5, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) class TripleDetect(nn.Module): # YOLO Detect head for detection models dynamic = False # force grid reconstruction export = False # export mode shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.nl = len(ch) // 3 # number of detection layers self.reg_max = 16 self.no = nc + self.reg_max * 4 # number of outputs per anchor self.inplace = inplace # use inplace ops (e.g. slice assignment) self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl]) self.cv3 = nn.ModuleList( nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl]) self.cv4 = nn.ModuleList( nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2]) self.cv5 = nn.ModuleList( nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2]) self.cv6 = nn.ModuleList( nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3]) self.cv7 = nn.ModuleList( nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3]) self.dfl = DFL(self.reg_max) self.dfl2 = DFL(self.reg_max) self.dfl3 = DFL(self.reg_max) def forward(self, x): shape = x[0].shape # BCHW d1 = [] d2 = [] d3 = [] for i in range(self.nl): d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)) d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1)) d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1)) if self.training: return [d1, d2, d3] elif self.dynamic or self.shape != shape: self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5)) self.shape = shape box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1) dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1) dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1) dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)] return y if self.export else (y, [d1, d2, d3]) def bias_init(self): # Initialize Detect() biases, WARNING: requires stride availability m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) for a, b, s in zip(m.cv4, m.cv5, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) for a, b, s in zip(m.cv6, m.cv7, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) class TripleDDetect(nn.Module): # YOLO Detect head for detection models dynamic = False # force grid reconstruction export = False # export mode shape = None anchors = torch.empty(0) # init strides = torch.empty(0) # init def __init__(self, nc=80, ch=(), inplace=True): # detection layer super().__init__() self.nc = nc # number of classes self.nl = len(ch) // 3 # number of detection layers self.reg_max = 16 self.no = nc + self.reg_max * 4 # number of outputs per anchor self.inplace = inplace # use inplace ops (e.g. slice assignment) self.stride = torch.zeros(self.nl) # strides computed during build c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \ max((ch[0], min((self.nc * 2, 128)))) # channels c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \ max((ch[self.nl], min((self.nc * 2, 128)))) # channels c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \ max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels self.cv2 = nn.ModuleList( nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl]) self.cv3 = nn.ModuleList( nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl]) self.cv4 = nn.ModuleList( nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2]) self.cv5 = nn.ModuleList( nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2]) self.cv6 = nn.ModuleList( nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4), nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3]) self.cv7 = nn.ModuleList( nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3]) self.dfl = DFL(self.reg_max) self.dfl2 = DFL(self.reg_max) self.dfl3 = DFL(self.reg_max) def forward(self, x): shape = x[0].shape # BCHW d1 = [] d2 = [] d3 = [] for i in range(self.nl): d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)) d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1)) d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1)) if self.training: return [d1, d2, d3] elif self.dynamic or self.shape != shape: self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5)) self.shape = shape box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1) dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1) dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1) dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides #y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)] #return y if self.export else (y, [d1, d2, d3]) y = torch.cat((dbox3, cls3.sigmoid()), 1) return y if self.export else (y, d3) def bias_init(self): # Initialize Detect() biases, WARNING: requires stride availability m = self # self.model[-1] # Detect() module # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1 # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency for a, b, s in zip(m.cv2, m.cv3, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) for a, b, s in zip(m.cv4, m.cv5, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) for a, b, s in zip(m.cv6, m.cv7, m.stride): # from a[-1].bias.data[:] = 1.0 # box b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image) class Segment(Detect): # YOLO Segment head for segmentation models def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True): super().__init__(nc, ch, inplace) self.nm = nm # number of masks self.npr = npr # number of protos self.proto = Proto(ch[0], self.npr, self.nm) # protos self.detect = Detect.forward c4 = max(ch[0] // 4, self.nm) self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) def forward(self, x): p = self.proto(x[0]) bs = p.shape[0] mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients x = self.detect(self, x) if self.training: return x, mc, p return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p)) class Panoptic(Detect): # YOLO Panoptic head for panoptic segmentation models def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True): super().__init__(nc, ch, inplace) self.sem_nc = sem_nc self.nm = nm # number of masks self.npr = npr # number of protos self.proto = Proto(ch[0], self.npr, self.nm) # protos self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc) self.detect = Detect.forward c4 = max(ch[0] // 4, self.nm) self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch) def forward(self, x): p = self.proto(x[0]) s = self.uconv(x[0]) bs = p.shape[0] mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients x = self.detect(self, x) if self.training: return x, mc, p, s return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s)) class BaseModel(nn.Module): # YOLO base model def forward(self, x, profile=False, visualize=False): return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_once(self, x, profile=False, visualize=False): y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _profile_one_layer(self, m, x, dt): c = m == self.model[-1] # is final layer, copy input as inplace fix o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_sync() for _ in range(10): m(x.copy() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') if c: LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers LOGGER.info('Fusing layers... ') for m in self.model.modules(): if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, 'bn') # remove batchnorm m.forward = m.forward_fuse # update forward self.info() return self def info(self, verbose=False, img_size=640): # print model information model_info(self, verbose, img_size) def _apply(self, fn): # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment)): m.stride = fn(m.stride) m.anchors = fn(m.anchors) m.strides = fn(m.strides) # m.grid = list(map(fn, m.grid)) return self class DetectionModel(BaseModel): # YOLO detection model def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml import yaml # for torch hub self.yaml_file = Path(cfg).name with open(cfg, encoding='ascii', errors='ignore') as f: self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True) # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, (Detect, DDetect, Segment)): s = 256 # 2x min stride m.inplace = self.inplace forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment)) else self.forward(x) m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward # check_anchor_order(m) # m.anchors /= m.stride.view(-1, 1, 1) self.stride = m.stride m.bias_init() # only run once if isinstance(m, (DualDetect, TripleDetect, DualDDetect, TripleDDetect)): s = 256 # 2x min stride m.inplace = self.inplace #forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualSegment)) else self.forward(x)[0] forward = lambda x: self.forward(x)[0] m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward # check_anchor_order(m) # m.anchors /= m.stride.view(-1, 1, 1) self.stride = m.stride m.bias_init() # only run once # Init weights, biases initialize_weights(self) self.info() LOGGER.info('') def forward(self, x, augment=False, profile=False, visualize=False): if augment: return self._forward_augment(x) # augmented inference, None return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self._forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, 1), None # augmented inference, train def _descale_pred(self, p, flips, scale, img_size): # de-scale predictions following augmented inference (inverse operation) if self.inplace: p[..., :4] /= scale # de-scale if flips == 2: p[..., 1] = img_size[0] - p[..., 1] # de-flip ud elif flips == 3: p[..., 0] = img_size[1] - p[..., 0] # de-flip lr else: x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr p = torch.cat((x, y, wh, p[..., 4:]), -1) return p def _clip_augmented(self, y): # Clip YOLO augmented inference tails nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4 ** x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices y[0] = y[0][:, :-i] # large i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][:, i:] # small return y Model = DetectionModel # retain YOLO 'Model' class for backwards compatibility class SegmentationModel(DetectionModel): # YOLO segmentation model def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None): super().__init__(cfg, ch, nc, anchors) class ClassificationModel(BaseModel): # YOLO classification model def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index super().__init__() self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg) def _from_detection_model(self, model, nc=1000, cutoff=10): # Create a YOLO classification model from a YOLO detection model if isinstance(model, DetectMultiBackend): model = model.model # unwrap DetectMultiBackend model.model = model.model[:cutoff] # backbone m = model.model[-1] # last layer ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module c = Classify(ch, nc) # Classify() c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type model.model[-1] = c # replace self.model = model.model self.stride = model.stride self.save = [] self.nc = nc def _from_yaml(self, cfg): # Create a YOLO classification model from a *.yaml file self.model = None def parse_model(d, ch): # model_dict, input_channels(3) # Parse a YOLO model.yaml dictionary LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation') if act: Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() LOGGER.info(f"{colorstr('activation:')} {act}") # print na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = eval(m) if isinstance(m, str) else m # eval strings for j, a in enumerate(args): with contextlib.suppress(NameError): args[j] = eval(a) if isinstance(a, str) else a # eval strings n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain if m in { Conv, AConv, ConvTranspose, Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown, RepNCSPELAN4, SPPELAN}: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in {BottleneckCSP, SPPCSPC}: args.insert(2, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) elif m is Shortcut: c2 = ch[f[0]] elif m is ReOrg: c2 = ch[f] * 4 elif m is CBLinear: c2 = args[0] c1 = ch[f] args = [c1, c2, *args[1:]] elif m is CBFuse: c2 = ch[f[-1]] # TODO: channel, gw, gd elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, TripleDDetect, Segment}: args.append([ch[x] for x in f]) # if isinstance(args[1], int): # number of anchors # args[1] = [list(range(args[1] * 2))] * len(f) if m in {Segment}: args[2] = make_divisible(args[2] * gw, 8) elif m is Contract: c2 = ch[f] * args[0] ** 2 elif m is Expand: c2 = ch[f] // args[0] ** 2 else: c2 = ch[f] m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--cfg', type=str, default='yolo.yaml', help='model.yaml') parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--profile', action='store_true', help='profile model speed') parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer') parser.add_argument('--test', action='store_true', help='test all yolo*.yaml') opt = parser.parse_args() opt.cfg = check_yaml(opt.cfg) # check YAML print_args(vars(opt)) device = select_device(opt.device) # Create model im = torch.rand(opt.batch_size, 3, 640, 640).to(device) model = Model(opt.cfg).to(device) model.eval() # Options if opt.line_profile: # profile layer by layer model(im, profile=True) elif opt.profile: # profile forward-backward results = profile(input=im, ops=[model], n=3) elif opt.test: # test all models for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'): try: _ = Model(cfg) except Exception as e: print(f'Error in {cfg}: {e}') else: # report fused model summary model.fuse()