from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-70b-chat-hf") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-70b-chat-hf") def launch(input, history = []): new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors="pt" ) bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) history = model.generate( bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id ).tolist() response = tokenizer.decode(history[0]).split("<|endoftext|>") response = [ (response[i], response[i + 1]) for i in range(0, len(response) - 1, 2) ] return response iface = gr.Interface(launch, inputs="text", outputs="text") iface.launch()