llama / app.py
Valerioweb's picture
Update app.py
8e7f191
raw
history blame
870 Bytes
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-70b-chat-hf")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-70b-chat-hf")
def launch(input, history = []):
new_user_input_ids = tokenizer.encode(
input + tokenizer.eos_token, return_tensors="pt"
)
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
history = model.generate(
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
).tolist()
response = tokenizer.decode(history[0]).split("<|endoftext|>")
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
]
return response
iface = gr.Interface(launch, inputs="text", outputs="text")
iface.launch()