#start import torch import torch.nn as nn import torch.optim as optim import numpy as np import cv2 import uuid import os from model.u2net import U2NET from torch.autograd import Variable from skimage import io, transform from PIL import Image import shutil # Get The Current Directory currentDir = os.path.dirname(__file__) # Functions: # Save Results def save_output(image_name, output_name, pred, d_dir, type): predict = pred predict = predict.squeeze() predict_np = predict.cpu().data.numpy() im = Image.fromarray(predict_np*255).convert('RGB') image = io.imread(image_name) imo = im.resize((image.shape[1], image.shape[0])) pb_np = np.array(imo) if type == 'image': # Make and apply mask mask = pb_np[:, :, 0] mask = np.expand_dims(mask, axis=2) imo = np.concatenate((image, mask), axis=2) imo = Image.fromarray(imo, 'RGBA') imo.save(d_dir+output_name) # Remove Background From Image (Generate Mask, and Final Results) def removeBg(imagePath): if not os.path.exists('static'): os.mkdir('static') inputs_dir = os.path.join(currentDir, 'static/inputs/') results_dir = os.path.join(currentDir, 'static/results/') masks_dir = os.path.join(currentDir, 'static/masks/') dirs_list = [inputs_dir, results_dir, masks_dir] for temp_dir in dirs_list: if not os.path.exists(temp_dir): os.mkdir(temp_dir) else: shutil.rmtree(temp_dir) os.mkdir(temp_dir) # convert string of image data to uint8 with open(imagePath, "rb") as image: f = image.read() img = bytearray(f) nparr = np.frombuffer(img, np.uint8) if len(nparr) == 0: return '---Empty image---' # decode image try: img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) except: # build a response dict to send back to client return "---Empty image---" # save image to inputs unique_filename = str(uuid.uuid4()) cv2.imwrite(inputs_dir+unique_filename+'.jpg', img) # processing image = transform.resize(img, (320, 320), mode='constant') tmpImg = np.zeros((image.shape[0], image.shape[1], 3)) tmpImg[:, :, 0] = (image[:, :, 0]-0.485)/0.229 tmpImg[:, :, 1] = (image[:, :, 1]-0.456)/0.224 tmpImg[:, :, 2] = (image[:, :, 2]-0.406)/0.225 tmpImg = tmpImg.transpose((2, 0, 1)) tmpImg = np.expand_dims(tmpImg, 0) image = torch.from_numpy(tmpImg) image = image.type(torch.FloatTensor) image = Variable(image) print("---Loading Model---") model_name = 'u2net' model_dir = os.path.join(currentDir, 'saved_models', model_name, model_name + '.pth') net = U2NET(3, 1) if torch.cuda.is_available(): net.load_state_dict(torch.load(model_dir)) net.cuda() else: net.load_state_dict(torch.load(model_dir, map_location='cpu')) # ------- Load Trained Model -------- print("---Removing Background...") d1, d2, d3, d4, d5, d6, d7 = net(image) pred = d1[:, 0, :, :] ma = torch.max(pred) mi = torch.min(pred) dn = (pred-mi)/(ma-mi) pred = dn save_output(inputs_dir+unique_filename+'.jpg', unique_filename + '.png', pred, results_dir, 'image') save_output(inputs_dir+unique_filename+'.jpg', unique_filename + '.png', pred, masks_dir, 'mask') return "---Success---" # ------- Load Trained Model -------- def filter_background(imgPath): print("---Loading Model---") model_name = 'u2net' model_dir = os.path.join(currentDir, 'saved_models', model_name, model_name + '.pth') net = U2NET(3, 1) if torch.cuda.is_available(): net.load_state_dict(torch.load(model_dir)) net.cuda() else: net.load_state_dict(torch.load(model_dir, map_location='cpu')) # ------- Load Trained Model -------- print("---Removing Background...") # ------- Call The removeBg Function -------- # imgPath = "1.jpg" # Change this to your image path print(removeBg(imgPath)) #end