import streamlit as st import cv2 import numpy as np from PIL import Image # import imutils # import easyocr # import os from fastai.vision.all import * import pathlib import platform import os # import shutil from fruit_classifier.config.configuration import ConfigurationManager system_platform = platform.system() if system_platform == 'Windows': pathlib.PosixPath = pathlib.WindowsPath config_manager = ConfigurationManager() config = config_manager.get_training_config() MODEL_ROOT = config.trained_model_path MODEL_NAME = config.params_model_name + '.pkl' MODEL_PATH = os.path.join(MODEL_ROOT, MODEL_NAME) def main(): st.title("Fruit Classifier") # Use st.camera to capture images from the user's camera img_file_buffer = st.camera_input(label='Please, take a photo of a fruit', key='fruit') # Check if an image is captured if img_file_buffer is not None: # Convert the image to a NumPy array image = Image.open(img_file_buffer) image.save('fruit_image.jpg') # image_np = np.array(image) # resized_image = cv2.resize(image_np, (640, 640)) # resized_image = resized_image.astype(np.uint8) # resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB) # image = cv2.imread(img_file_buffer) # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # cv2.imwrite('fruit_image.jpg', image) model = load_learner(MODEL_PATH) model_output = model.predict('fruit_image.jpg') category_list = [cat for cat in model.dls.vocab] prob_idx = category_list.index(model_output[0]) st.write(f'{model_output[0].title()} is depicted in the photo with {model_output[-1][prob_idx]:.4f} confidence.') st.session_state.pop("fruit") if __name__ == "__main__": main()