""" OpenAI pretrained model functions Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI. """ # Copyright (c) Meta Platforms, Inc. and affiliates import os import warnings from typing import Union, List import torch from .model import build_model_from_openai_state_dict from .pretrained import get_pretrained_url, list_pretrained_tag_models, download_pretrained __all__ = ["list_openai_models", "load_openai_model"] def list_openai_models() -> List[str]: """Returns the names of available CLIP models""" return list_pretrained_tag_models('openai') def load_openai_model( name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True, ): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model (default) or more hackable non-JIT model. Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if get_pretrained_url(name, 'openai'): model_path = download_pretrained(get_pretrained_url(name, 'openai')) elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}") try: # loading JIT archive model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") if not jit: try: model = build_model_from_openai_state_dict(state_dict or model.state_dict()).to(device) except KeyError: sd = {k[7:]: v for k, v in state_dict["state_dict"].items()} model = build_model_from_openai_state_dict(sd).to(device) if str(device) == "cpu": model.float() return model # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): try: graphs = [module.graph] if hasattr(module, "graph") else [] except RuntimeError: graphs = [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() # ensure image_size attr available at consistent location for both jit and non-jit model.visual.image_size = model.input_resolution.item() return model