import gradio as gr from fastai.vision.all import * import timm # Importing the model model = load_learner('model.pkl') categories = model.dls.vocab def predict_snake_type(img): snake_type, idx, probs = model.predict(img) return dict(zip(categories, map(float, probs))) # Gradio Interface input_img = gr.Image() outputs = gr.Label(num_top_classes=5) gr.Interface( fn=predict_snake_type, inputs=[input_img], outputs=outputs, examples=[ 'examples/agkistrodon-contortrix.jpg', 'examples/haldea-striatula.jpg', 'examples/masticophis-flagellum.jpg', 'examples/storeria-occipitomaculata.jpg' ], title='Classifying Different Breeds of snakes', description='This is a multi-classification model that identifies different breeds of snakes.\nPlease note that is model is only `74%` accurate.' ).launch()