import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import requests from bs4 import BeautifulSoup import time import json import xml.etree.ElementTree as ET # Move models to CUDA if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained("stanford-crfm/BioMedLM") model = AutoModelForCausalLM.from_pretrained("stanford-crfm/BioMedLM").to(device) api_key = '2c78468d6246082d456a140bb1de415ed108' num_results = 10 def extract_longer_answers_from_paragraphs(paragraphs, query, tokenizer, model): context = " ".join(paragraphs) question = f"What is the mechanism of {query}?" context += question inputs = tokenizer(context, return_tensors="pt", add_special_tokens=False, output_attentions=False).to(device) top_p = 0.9 # Adjust as needed max_len = 50 # Adjust as needed outputs = model.generate( **inputs, top_p=top_p, max_length=max_len, num_beams=1, # Adjust as needed no_repeat_ngram_size=2 # Adjust as needed ) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) return answer def retrieve_and_answer(query1, query2): combined_query1 = f"({query1}) AND ({query2})" answer = fetch_and_generate(query1, combined_query, tokenizer, model) return answer1, answer2 def fetch_and_generate(query, combined_query, tokenizer, model): esearch_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&api_key={api_key}&term={combined_query}&retmax={num_results}&sort=relevance" headers = {'Accept': 'application/json'} response = requests.get(esearch_url, headers=headers) root = ET.fromstring(response.text) if response.status_code == 200: paragraphs = [] for article_id in root.find('IdList'): article_id = article_id.text efetch_url = f"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&api_key={api_key}&id={article_id}&retmode=xml" response = requests.get(efetch_url) if response.status_code == 200: article_data = response.text soup = BeautifulSoup(article_data, 'xml') articles = soup.find_all('PubmedArticle') for article in articles: title = article.find('ArticleTitle') if title: title_text = title.text if article.find('AbstractText'): paragraphs.append(article.find('AbstractText').text) else: print("Error:", response.status_code) time.sleep(3) answer = extract_longer_answers_from_paragraphs(paragraphs, query, tokenizer, model) return answer else: print("Error:", response.status_code) return "Error fetching articles.", [] # Gradio Interface iface = gr.Interface( fn=retrieve_and_answer, inputs=[gr.Textbox(placeholder="Enter Query 1", label= 'query1'), gr.Textbox(placeholder="Enter Query 2", label= 'query2')], outputs=[ gr.Textbox(placeholder="Answer from BioMedLM"), ], live=True, title="PubMed Question Answering: Stanford/BioMedLM", description="Enter two queries to retrieve PubMed articles and compare answers from different models.", examples=[ ["sertraline", "mechanism"], ["cancer", "treatment"] ] ) iface.launch()