import gradio as gr import torch import transformers # saved_model def load_model(model_path): saved_data = torch.load( model_path, map_location="cpu" ) bart_best = saved_data["model"] train_config = saved_data["config"] tokenizer = transformers.PreTrainedTokenizerFast.from_pretrained('gogamza/kobart-base-v1') ## Load weights. model = transformers.BartForConditionalGeneration.from_pretrained('gogamza/kobart-base-v1') model.load_state_dict(bart_best) return model, tokenizer # main def inference(prompt): model_path = "./kobart-model-logical.pth" model, tokenizer = load_model( model_path=model_path ) input_ids = tokenizer.encode(prompt) input_ids = torch.tensor(input_ids) input_ids = input_ids.unsqueeze(0) output = model.generate(input_ids) output = tokenizer.decode(output[0], skip_special_tokens=True) return output demo = gr.Interface( fn=inference, inputs="text", outputs="text" #return 값 ).launch(share=True) # launch(share=True)를 설정하면 외부에서 접속 가능한 링크가 생성됨 demo.launch()