# Text generation from src.logger.logger import logging from src.exception.exception import customexception import sys from langchain_huggingface import HuggingFaceEndpoint # Text generation model # repo_id="Laim/Llama-3.1-MedPalm2-imitate-8B-Instruct" # repo_id="Joycean0301/Llama-3.2-3B-Instruct-Medical-Conversational" # repo_id = "TheBloke/medalpaca-13B-GGML" repo_id="mistralai/Mistral-7B-Instruct-v0.3" class DocChatProcessor: def __init__(self, hf_token): self.llm = HuggingFaceEndpoint( repo_id=repo_id, max_new_tokens=512, top_k=10, top_p=0.95, typical_p=0.95, temperature=0.01, repetition_penalty=1.03, streaming=False, huggingfacehub_api_token= hf_token, stop_sequences=['?', '', '.\n\n'] ) logging.info("LLM model for medical text generation created.") def generate_response(self, input_text): try: logging.info("Text response generated.") return self.llm.invoke(input_text) except Exception as e: raise customexception(e,sys)