import streamlit as st import gradio as gr import shap import torch import tensorflow as tf from transformers import RobertaTokenizer, RobertaModel from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("paragon-analytics/ADRv1") model = AutoModelForSequenceClassification.from_pretrained("paragon-analytics/ADRv1") def adr_predict(x): encoded_input = tokenizer(x, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = tf.nn.softmax(scores) # build a pipeline object to do predictions pred = transformers.pipeline("text-classification", model=model, tokenizer=tokenizer, device=0, return_all_scores=True) explainer = shap.Explainer(pred) shap_values = explainer([x]) shap_plot = shap.plots.text(shap_values) return {"Severe Reaction": float(scores.numpy()[1]), "Non-severe Reaction": float(scores.numpy()[0])}, shap_plot def main(text): text = str(text).lower() obj = adr_predict(text) return obj[0],obj[1] title = "Welcome to **ADR Detector** 🪐" description1 = """ This app takes text (up to a few sentences) and predicts to what extent the text describes severe (or non-severe) adverse reaction to medicaitons. """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("""---""") text = gr.Textbox(label="Enter Your Text Here:",lines=2, placeholder="Type it here ...") submit_btn = gr.Button("Analyze") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") # impplot = gr.HighlightedText(label="Important Words", combine_adjacent=False).style( # color_map={"+++": "royalblue","++": "cornflowerblue", # "+": "lightsteelblue", "NA":"white"}) # NER = gr.HTML(label = 'NER:') shap_plot = gr.HighlightedText(label="Word Scores",combine_adjacent=False) submit_btn.click( main, [text], [label,shap_plot], api_name="adr" ) gr.Markdown("### Click on any of the examples below to see to what extent they contain resilience messaging:") gr.Examples([["I have minor pain."],["I have severe pain."]], [text], [label,shap_plot], main, cache_examples=True) demo.launch()