import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("classroom_xgb.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(Admission_Grade, Second_Sem_Grades, Previous_Qualification_Grade, First_Sem_Grades, Course, Second_Sem_Units_Approved, Age_at_Enrollment): new_row = pd.DataFrame.from_dict({'Admission_Grade':Admission_Grade, 'Second_Sem_Grades':Second_Sem_Grades,'Previous_Qualification_Grade':Previous_Qualification_Grade,'First_Sem_Grades':First_Sem_Grades, 'Course':Course,'Second_Sem_Units_Approved':Second_Sem_Units_Approved,'Age_at_Enrollment':Age_at_Enrollment}, orient = 'index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.close() return {"Dropout": float(prob[0][0]), "Graduate": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Student Graduation Predictor & Interpreter** 🪐" description1 = """This app takes info from subjects and predicts their graduation likelihood.""" description2 = """ To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. 🤞 """ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="blue", neutral_hue="cyan")) as demo: with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") with gr.Row(): with gr.Column(): Admission_Grade = gr.Slider(label="Admission Grade", minimum=0, maximum=200, value=100, step=1) Age_at_Enrollment = gr.Slider(label="Age at Enrollment", minimum=10, maximum=80, value=40, step=1) Previous_Qualification_Grade = gr.Slider(label="Previous Qualification Grade", minimum=0, maximum=200, value=100, step=1) First_Sem_Grades = gr.Slider(label="First Semester Grade", minimum=0, maximum=20, value=10, step=1) Second_Sem_Grades = gr.Slider(label="Second Semester Grade", minimum=0, maximum=20, value=10, step=1) Course = gr.Dropdown(label="Select a Course:", choices=[33,171,8014,9003,9070,9085,9119,9130,9147,9238,9254,9500,9556,9670,9773,9853,9991], value=33) Second_Sem_Units_Approved = gr.Slider(label="Second Semester Units Approved", minimum=0, maximum=20, value=10, step=1) submit_btn = gr.Button("Analyze") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') submit_btn.click( main_func, [Admission_Grade, Second_Sem_Grades, Previous_Qualification_Grade, First_Sem_Grades, Course, Second_Sem_Units_Approved, Age_at_Enrollment], [label,local_plot], api_name="Graduation_Predictor" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[119,13,122,12,3,0,18],[100,20,90,50,33,2,20]], [Admission_Grade, Second_Sem_Grades, Previous_Qualification_Grade, First_Sem_Grades, Course, Second_Sem_Units_Approved, Age_at_Enrollment] , [label,local_plot], main_func, cache_examples=True) demo.launch()