import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the data from disk df = pd.read_csv("heart.csv").sample(frac = 1, random_state=1) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(age,sex,cp,trtbps,chol,fbs,restecg,thalachh,exng,oldpeak,slp,caa,thall,output): new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, 'cp':cp,'trtbps':trtbps,'chol':chol,'chol':chol,'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng, 'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall,'output':output}).transpose() prob = df.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.close() return {"High Risk": float(prob[0][0]), "Low Risk": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Employee Turnover Predictor & Interpreter** 🪐" description1 = """ This app takes six inputs about employees' satisfaction with different aspects of their work (such as work-life balance, ...) and predicts whether the employee intends to stay with the employer or leave. There are two outputs from the app: 1- the predicted probability of stay or leave, 2- Shapley's force-plot which visualizes the extent to which each factor impacts the stay/ leave prediction.✨ """ description2 = """ To use the app, click on one of the examples, or adjust the values of the six employee satisfaction factors, and click on Analyze. 🤞 """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") # gr.Markdown("""![marketing](file/marketing.jpg)""") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") ValueDiversity = gr.Slider(label="ValueDiversity Score", minimum=1, maximum=5, value=4, step=1) AdequateResources = gr.Slider(label="AdequateResources Score", minimum=1, maximum=5, value=4, step=1) Voice = gr.Slider(label="Voice Score", minimum=1, maximum=5, value=4, step=1) GrowthAdvancement = gr.Slider(label="GrowthAdvancement Score", minimum=1, maximum=5, value=4, step=1) Workload = gr.Slider(label="Workload Score", minimum=1, maximum=5, value=4, step=1) WorkLifeBalance = gr.Slider(label="WorkLifeBalance Score", minimum=1, maximum=5, value=4, step=1) submit_btn = gr.Button("Analyze") with gr.Column(visible=True) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') submit_btn.click( main_func, [ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance], [label,local_plot], api_name="Employee_Turnover" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[4,4,4,4,5,5], [5,4,5,4,4,4]], [ValueDiversity,AdequateResources,Voice,GrowthAdvancement,Workload,WorkLifeBalance], [label,local_plot], main_func, cache_examples=True) demo.launch()