import pickle import pandas as pd import shap from shap.plots._force_matplotlib import draw_additive_plot import gradio as gr import numpy as np import matplotlib.pyplot as plt # load the model from disk loaded_model = pickle.load(open("heart_ba4522_example.pkl", 'rb')) # Setup SHAP explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. # Create the main function for server def main_func(age, sex, cp, trestbps, chol, fbs, restecg, thalach, exang, oldpeak, slope, ca, thal): new_row = pd.DataFrame.from_dict({'age': age, 'sex':sex, 'cp':cp, 'trestbps':trestbps, 'chol':chol, 'fbs':fbs, 'restecg':restecg, 'thalach':thalach, 'exang':exang, 'oldpeak':oldpeak, 'slope':slope, 'ca':ca, 'thal':thal }, orient = 'index').transpose() prob = loaded_model.predict_proba(new_row) shap_values = explainer(new_row) # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) plot = shap.plots.bar(shap_values[0], max_display=7, order=shap.Explanation.abs, show_data='auto', show=False) plt.tight_layout() local_plot = plt.gcf() plt.rcParams['figure.figsize'] = 7,4 plt.close() return {"Normal Heart Condition": float(prob[0][0]), "Critical Heart Condition": 1-float(prob[0][0])}, local_plot # Create the UI title = "**Heart Condition Predictor & Interpreter** 🪐" description1 = """ This app takes inputs about patients' demographics and medical history to predict whether the patient has heart condition. There are two outputs from the app: 1- the predicted probability of normal condition or heart condition, 2- Shapley's force-plot which visualizes the extent to which each factor impacts the prediction. """ description2 = """ To use the app, click on one of the examples, or adjust the values of the patient factors, and click on Analyze. ✨ """ with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") # gr.Markdown("""![marketing](types-of-employee-turnover.jpg)""") gr.Markdown(description1) gr.Markdown("""---""") gr.Markdown(description2) gr.Markdown("""---""") with gr.Row(): with gr.Column(): age = gr.Slider(label="age", minimum=17, maximum=74, value=24, step=1) sex = gr.Slider(label="sex", minimum=0, maximum=1, value=1, step=1) cp = gr.Slider(label="cp Score", minimum=1, maximum=4, value=3, step=.1) trestbps = gr.Slider(label="trestbps Score", minimum=94, maximum=200, value=150, step=.1) chol = gr.Slider(label="chol Score", minimum=126, maximum=564, value=400, step=.1) fbs = gr.Slider(label="fbs Score", minimum=0, maximum=1, value=0, step=.1) restecg = gr.Slider(label="restecg Score", minimum=0, maximum=2, value=1, step=.1) thalach = gr.Slider(label="thalach Score", minimum=71, maximum=202, value=90, step=.1) exang = gr.Slider(label="exang Score", minimum=0, maximum=1, value=1, step=.1) oldpeak = gr.Slider(label="oldpeak Score", minimum=0, maximum=6, value=4, step=.1) slope = gr.Slider(label="slope Score", minimum=1, maximum=3, value=2, step=.1) ca = gr.Slider(label="ca Score", minimum=0, maximum=3, value=2, step=.1) thal = gr.Slider(label="thal Score", minimum=3, maximum=7, value=4, step=.1) submit_btn = gr.Button("Analyze") with gr.Column(visible=True,scale=1, min_width=600) as output_col: label = gr.Label(label = "Predicted Label") local_plot = gr.Plot(label = 'Shap:') submit_btn.click( main_func, [age, sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal], [label,local_plot], api_name="Heart_Condition" ) gr.Markdown("### Click on any of the examples below to see how it works:") gr.Examples([[33,0,1,100,230,1,1,150,0,.9,2,1,6], [39,1,0,170,200,1,1,150,0,1.4,2,1,6]], [age,sex,cp,trestbps,chol,fbs,restecg,thalach,exang,oldpeak,slope,ca,thal], [label,local_plot], main_func, cache_examples=True) demo.launch()