Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, LayoutLMv3ImageProcessor | |
model_name = "TusharGoel/LiLT-Document-QA" | |
revision = "3a510b84c579386c5edfd3881ba839bba28e6a44" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, apply_ocr = True, revision=revision) | |
image_processor = LayoutLMv3ImageProcessor() | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name, revision=revision) | |
model.eval() | |
def qna(image, question): | |
try: | |
res = image_processor(image, apply_ocr = True) | |
words = res["words"][0] | |
boxes = res["boxes"][0] | |
encoding = tokenizer(question, words, boxes = boxes, return_token_type_ids=True, return_tensors="pt", truncation=True, padding="max_length") | |
word_ids = encoding.word_ids(0) | |
outputs = model(**encoding) | |
start_scores = outputs.start_logits | |
end_scores = outputs.end_logits | |
start, end = word_ids[start_scores.argmax(-1).item()], word_ids[end_scores.argmax(-1).item()] | |
answer = " ".join(words[start : end + 1]) | |
except: | |
answer = "No Answer" | |
return answer | |
img = gr.Image(label="Image") | |
question = gr.Text(label="Question") | |
label = gr.Label(label="label") | |
iface = gr.Interface(fn=qna, inputs=[img, question], outputs=label, title="LiLT - Document Question Answering", allow_duplication=True) | |
iface.launch() |