import gradio as gr import torch import torch.nn.functional as F from facenet_pytorch import MTCNN, InceptionResnetV1 import os import numpy as np from PIL import Image import zipfile with zipfile.ZipFile("examples.zip","r") as zip_ref: zip_ref.extractall(".") DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' mtcnn = MTCNN( select_largest=False, post_process=False, device=DEVICE ).to(DEVICE).eval() model = InceptionResnetV1( pretrained="vggface2", classify=True, num_classes=1, device=DEVICE ) checkpoint = torch.load("resnetinceptionv1_epoch_32.pth") model.load_state_dict(checkpoint['model_state_dict']) model.to(DEVICE) model.eval() EXAMPLES_FOLDER = 'examples' examples_names = os.listdir(EXAMPLES_FOLDER) examples = [] for example_name in examples_names: example_path = os.path.join(EXAMPLES_FOLDER, example_name) label = example_name.split('_')[0] example = { 'path': example_path, 'label': label } examples.append(example) np.random.shuffle(examples) # shuffle def predict(input_image:Image.Image, true_label:str): """Predict the label of the input_image""" face = mtcnn(input_image) if face is None: raise Exception('No face detected') face = face.unsqueeze(0) # add the batch dimension face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False) # convert the face into a numpy array to be able to plot it face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy() face = face.to(DEVICE) face = face.to(torch.float32) face = face / 255.0 with torch.no_grad(): output = torch.sigmoid(model(face).squeeze(0)) prediction = "real" if output.item() < 0.5 else "fake" real_prediction = 1 - output.item() fake_prediction = output.item() confidences = { 'real': real_prediction, 'fake': fake_prediction } return confidences, true_label, face_image_to_plot interface = gr.Interface( fn=predict, inputs=[ gr.inputs.Image(label="Input Image", type="pil"), "text" ], outputs=[ gr.outputs.Label(label="Class"), "text", gr.outputs.Image(label="Face") ], examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)] ).launch()