import os from typing import List, Optional, Union import gradio as gr import spacy from spacy.tokens import Doc, Span from relik import Relik from relik.inference.data.objects import TaskType, RelikOutput from relik.retriever.pytorch_modules import GoldenRetriever from relik.retriever.indexers.inmemory import InMemoryDocumentIndex from pyvis.network import Network # RELIK Models Setup wikipedia_retriever = GoldenRetriever("relik-ie/encoder-e5-base-v2-wikipedia", device="cuda") wikipedia_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-base-v2-wikipedia-index", index_precision="bf16", device="cuda") wikidata_retriever = GoldenRetriever("relik-ie/encoder-e5-small-v2-wikipedia-relations", device="cuda") wikidata_index = InMemoryDocumentIndex.from_pretrained("relik-ie/encoder-e5-small-v2-wikipedia-relations-index", index_precision="bf16", device="cuda") relik_models = { "sapienzanlp/relik-entity-linking-large": Relik.from_pretrained( "sapienzanlp/relik-entity-linking-large", device="cuda", index=wikipedia_index, retriever=wikipedia_retriever, reader_kwargs={"dataset_kwargs": {"use_nme": True}} ), "relik-ie/relik-relation-extraction-small": Relik.from_pretrained( "relik-ie/relik-relation-extraction-small", index=wikidata_index, device="cuda", retriever=wikidata_retriever ) } def get_span_annotations(response, doc): spans = [] for span in response.spans: spans.append(Span(doc, span.start, span.end, span.label)) colors = {span.label_: '#ff5733' for span in spans} # Simple fixed color for demonstration return spans, colors def generate_graph(spans, response, colors): g = Network(width="720px", height="600px", directed=True) for ent in spans: g.add_node(ent.text, label=ent.text, color=colors[ent.label_], size=15) seen_rels = set() for rel in response.triplets: if (rel.subject.text, rel.object.text, rel.label) in seen_rels: continue g.add_edge(rel.subject.text, rel.object.text, label=rel.label) seen_rels.add((rel.subject.text, rel.object.text, rel.label)) html = g.generate_html() return f"""""" def text_analysis(Text, Model, Relation_Threshold, Window_Size, Window_Stride): if Model not in relik_models: raise ValueError(f"Model {Model} not found.") relik = relik_models[Model] nlp = spacy.blank("xx") annotated_text = relik(Text, annotation_type="word", relation_threshold=Relation_Threshold, window_size=Window_Size, window_stride=Window_Stride) doc = Doc(nlp.vocab, words=[token.text for token in annotated_text.tokens]) spans, colors = get_span_annotations(annotated_text, doc) doc.spans["sc"] = spans display_el = spacy.displacy.render(doc, style="span", options={"colors": colors}).replace("\n", " ") display_el = display_el.replace("border-radius: 0.35em;", "border-radius: 0.35em; white-space: nowrap;").replace("span style", "span id='el' style") display_re = generate_graph(spans, annotated_text, colors) if annotated_text.triplets else "" return display_el, display_re theme = gr.themes.Base(primary_hue="rose", secondary_hue="rose", text_size="lg") css = """ h1 { text-align: center; display: block; } mark { color: black; } #el { white-space: nowrap; } """ with gr.Blocks(fill_height=True, css=css, theme=theme) as demo: gr.Markdown("# ReLiK with P-FAF Integration") gr.Interface( text_analysis, [ gr.Textbox(label="Input Text", placeholder="Enter sentence here..."), gr.Dropdown(list(relik_models.keys()), value="sapienzanlp/relik-entity-linking-large", label="Relik Model"), gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Relation Threshold"), gr.Slider(minimum=16, maximum=128, step=16, value=32, label="Window Size"), gr.Slider(minimum=8, maximum=64, step=8, value=16, label="Window Stride") ], [gr.HTML(label="Entities"), gr.HTML(label="Relations")], examples=[ ["Michael Jordan was one of the best players in the NBA."], ["Noam Chomsky is a renowned linguist and cognitive scientist."] ], allow_flagging="never" ) if __name__ == "__main__": demo.launch()