#!/usr/bin/env python from __future__ import annotations import os import gradio as gr import torch from inference import InferencePipeline class InferenceUtil: def __init__(self, hf_token: str | None): self.hf_token = hf_token def load_model_info(self, model_id: str) -> tuple[str, str]: try: card = InferencePipeline.get_model_card(model_id, self.hf_token) except Exception: return "", "" base_model = getattr(card.data, "base_model", "") training_prompt = getattr(card.data, "training_prompt", "") return base_model, training_prompt DESCRIPTION = "# [Tune-A-Video](https://tuneavideo.github.io/)" if not torch.cuda.is_available(): DESCRIPTION += "\n
Running on CPU 🥶 This demo does not work on CPU.
" CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" HF_TOKEN = os.getenv("HF_TOKEN") pipe = InferencePipeline(HF_TOKEN) app = InferenceUtil(HF_TOKEN) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) with gr.Row(): with gr.Column(): with gr.Group(): model_id = gr.Dropdown( label="Model ID", choices=[ "Tune-A-Video-library/a-man-is-surfing", "Tune-A-Video-library/mo-di-bear-guitar", "Tune-A-Video-library/redshift-man-skiing", ], value="Tune-A-Video-library/a-man-is-surfing", ) with gr.Accordion(label="Model info (Base model and prompt used for training)", open=False): with gr.Row(): base_model_used_for_training = gr.Text(label="Base model", interactive=False) prompt_used_for_training = gr.Text(label="Training prompt", interactive=False) prompt = gr.Textbox(label="Prompt", max_lines=1, placeholder='Example: "A panda is surfing"') video_length = gr.Slider(label="Video length", minimum=4, maximum=12, step=1, value=8) fps = gr.Slider(label="FPS", minimum=1, maximum=12, step=1, value=1) seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0) with gr.Accordion("Other Parameters", open=False): num_steps = gr.Slider(label="Number of Steps", minimum=0, maximum=100, step=1, value=50) guidance_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=50, step=0.1, value=7.5) run_button = gr.Button("Generate") gr.Markdown( """ - It takes a few minutes to download model first. - Expected time to generate an 8-frame video: 70 seconds with T4, 24 seconds with A10G, (10 seconds with A100) """ ) with gr.Column(): result = gr.Video(label="Result") with gr.Row(): examples = [ [ "Tune-A-Video-library/a-man-is-surfing", "A panda is surfing.", 8, 1, 3, 50, 7.5, ], [ "Tune-A-Video-library/a-man-is-surfing", "A racoon is surfing, cartoon style.", 8, 1, 3, 50, 7.5, ], [ "Tune-A-Video-library/mo-di-bear-guitar", "a handsome prince is playing guitar, modern disney style.", 8, 1, 123, 50, 7.5, ], [ "Tune-A-Video-library/mo-di-bear-guitar", "a magical princess is playing guitar, modern disney style.", 8, 1, 123, 50, 7.5, ], [ "Tune-A-Video-library/mo-di-bear-guitar", "a rabbit is playing guitar, modern disney style.", 8, 1, 123, 50, 7.5, ], [ "Tune-A-Video-library/mo-di-bear-guitar", "a baby is playing guitar, modern disney style.", 8, 1, 123, 50, 7.5, ], [ "Tune-A-Video-library/redshift-man-skiing", "(redshift style) spider man is skiing.", 8, 1, 123, 50, 7.5, ], [ "Tune-A-Video-library/redshift-man-skiing", "(redshift style) black widow is skiing.", 8, 1, 123, 50, 7.5, ], [ "Tune-A-Video-library/redshift-man-skiing", "(redshift style) batman is skiing.", 8, 1, 123, 50, 7.5, ], [ "Tune-A-Video-library/redshift-man-skiing", "(redshift style) hulk is skiing.", 8, 1, 123, 50, 7.5, ], ] gr.Examples( examples=examples, inputs=[ model_id, prompt, video_length, fps, seed, num_steps, guidance_scale, ], outputs=result, fn=pipe.run, cache_examples=CACHE_EXAMPLES, ) model_id.change( fn=app.load_model_info, inputs=model_id, outputs=[ base_model_used_for_training, prompt_used_for_training, ], api_name=False, ) inputs = [ model_id, prompt, video_length, fps, seed, num_steps, guidance_scale, ] prompt.submit( fn=pipe.run, inputs=inputs, outputs=result, api_name=False, ) run_button.click( fn=pipe.run, inputs=inputs, outputs=result, api_name="run", ) if __name__ == "__main__": demo.queue(max_size=20).launch()