import streamlit as st from transformers import AutoModelForSeq2SeqLM, AutoTokenizer import torch # MUST be the first Streamlit command st.set_page_config(page_title="CodeMentor AI", page_icon="💻", layout="centered") # Load model and tokenizer @st.cache_resource def load_model(): model = AutoModelForSeq2SeqLM.from_pretrained("Tuathe/codementor-flan") tokenizer = AutoTokenizer.from_pretrained("Tuathe/codementor-flan") return model, tokenizer model, tokenizer = load_model() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Streamlit app UI st.markdown( "

CodeMentor AI

", unsafe_allow_html=True ) st.markdown( "

Your AI Coding Interview Assistant

", unsafe_allow_html=True ) # Sidebar info with st.sidebar: st.title("About CodeMentor AI") st.info( "This assistant is fine-tuned on 20k+ coding problems. " "Ask any Data Structures, Algorithms, or Python/Java coding question!" ) st.markdown("---") st.markdown("Created by Chetan") # Chat interface user_input = st.text_area("Ask your coding question here:", height=150) if st.button("Get Answer"): if not user_input.strip(): st.warning("Please enter a question.") else: with st.spinner("Generating answer..."): prompt = f"### Question:\n{user_input}\n\n### Answer:\n" inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True).to(device) outputs = model.generate(**inputs, max_new_tokens=256) answer = tokenizer.decode(outputs[0], skip_special_tokens=True) answer = answer.split("### Answer:")[-1].strip() st.success("Response:") st.code(answer, language="python")