import os
import shutil
import traceback
from enum import Enum
import commentjson as json
import gradio as gr
import tiktoken
from loguru import logger
from src import shared
from src.config import (
retrieve_proxy,
local_embedding,
websearch_engine,
bing_search_api_key,
google_search_api_key,
serper_search_api_key,
searchapi_api_key,
google_search_cx,
)
from src.index_func import construct_index
from src.presets import (
MODEL_TOKEN_LIMIT,
DEFAULT_TOKEN_LIMIT,
TOKEN_OFFSET,
REDUCE_TOKEN_FACTOR,
STANDARD_ERROR_MSG,
NO_APIKEY_MSG,
BILLING_NOT_APPLICABLE_MSG,
NO_INPUT_MSG,
HISTORY_DIR,
INITIAL_SYSTEM_PROMPT,
PROMPT_TEMPLATE,
WEBSEARCH_PTOMPT_TEMPLATE,
)
from src.search_engine import (
search_with_google,
search_with_duckduckgo,
search_with_bing,
search_with_searchapi,
search_with_serper,
)
from src.utils import (
i18n,
construct_assistant,
construct_user,
save_file,
hide_middle_chars,
count_token,
new_auto_history_filename,
get_history_names,
init_history_list,
get_history_list,
replace_special_symbols,
get_first_history_name,
add_source_numbers,
add_details,
replace_today,
chinese_preprocessing_func,
)
class ModelType(Enum):
Unknown = -1
OpenAI = 0
ChatGLM = 1
OpenAIInstruct = 2
OpenAIVision = 3
Claude = 4
Qwen = 5
LLaMA = 6
ZhipuAI = 7
@classmethod
def get_type(cls, model_name: str):
model_name_lower = model_name.lower()
if "gpt" in model_name_lower:
if "instruct" in model_name_lower:
model_type = ModelType.OpenAIInstruct
elif "vision" in model_name_lower:
model_type = ModelType.OpenAIVision
else:
model_type = ModelType.OpenAI
elif "chatglm" in model_name_lower:
model_type = ModelType.ChatGLM
elif "llama" in model_name_lower or "alpaca" in model_name_lower or "yi" in model_name_lower:
model_type = ModelType.LLaMA
elif model_name_lower in ["glm-3-turbo","glm4"]: # todo: more check
model_type = ModelType.ZhipuAI
else:
model_type = ModelType.Unknown
return model_type
class BaseLLMModel:
def __init__(
self,
model_name,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
n_choices=1,
stop="",
max_generation_token=None,
presence_penalty=0,
frequency_penalty=0,
logit_bias=None,
user="",
single_turn=False,
) -> None:
self.history = []
self.all_token_counts = []
self.model_name = model_name
self.model_type = ModelType.get_type(model_name)
self.token_upper_limit = MODEL_TOKEN_LIMIT.get(model_name, DEFAULT_TOKEN_LIMIT)
self.interrupted = False
self.system_prompt = system_prompt
self.api_key = None
self.need_api_key = False
self.history_file_path = get_first_history_name(user)
self.user_name = user
self.chatbot = []
self.default_single_turn = single_turn
self.default_temperature = temperature
self.default_top_p = top_p
self.default_n_choices = n_choices
self.default_stop_sequence = stop
self.default_max_generation_token = max_generation_token
self.default_presence_penalty = presence_penalty
self.default_frequency_penalty = frequency_penalty
self.default_logit_bias = logit_bias
self.default_user_identifier = user
self.single_turn = single_turn
self.temperature = temperature
self.top_p = top_p
self.n_choices = n_choices
self.stop_sequence = stop
self.max_generation_token = max_generation_token
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.logit_bias = logit_bias
self.user_identifier = user
self.metadata = {}
def get_answer_stream_iter(self):
"""stream predict, need to be implemented
conversations are stored in self.history, with the most recent question, in OpenAI format
should return a generator, each time give the next word (str) in the answer
"""
logger.warning("stream predict not implemented, using at once predict instead")
response, _ = self.get_answer_at_once()
yield response
def get_answer_at_once(self):
"""predict at once, need to be implemented
conversations are stored in history, with the most recent question, in OpenAI format
Should return:
the answer (str)
total token count (int)
"""
logger.warning("at once predict not implemented, using stream predict instead")
response_iter = self.get_answer_stream_iter()
count = 0
response = ''
for response in response_iter:
count += 1
return response, sum(self.all_token_counts) + count
def billing_info(self):
"""get billing infomation, inplement if needed"""
return BILLING_NOT_APPLICABLE_MSG
def count_token(self, user_input):
"""get token count from input, implement if needed"""
return len(user_input)
def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""):
def get_return_value():
return chatbot, status_text
status_text = i18n("开始实时传输回答……")
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
logger.debug(f"输入token计数: {user_token_count}")
if display_append:
display_append = (
'\n\n
' + display_append
)
partial_text = ""
token_increment = 1
for partial_text in self.get_answer_stream_iter():
if type(partial_text) == tuple:
partial_text, token_increment = partial_text
chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
self.all_token_counts[-1] += token_increment
status_text = self.token_message()
yield get_return_value()
if self.interrupted:
self.recover()
break
self.history.append(construct_assistant(partial_text))
def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""):
if fake_input:
chatbot.append((fake_input, ""))
else:
chatbot.append((inputs, ""))
if fake_input is not None:
user_token_count = self.count_token(fake_input)
else:
user_token_count = self.count_token(inputs)
self.all_token_counts.append(user_token_count)
ai_reply, total_token_count = self.get_answer_at_once()
self.history.append(construct_assistant(ai_reply))
if fake_input is not None:
self.history[-2] = construct_user(fake_input)
chatbot[-1] = (chatbot[-1][0], ai_reply + display_append)
self.all_token_counts[-1] += count_token(construct_assistant(ai_reply))
status_text = self.token_message()
return chatbot, status_text
def handle_file_upload(self, files, chatbot, language):
"""if the model accepts modal input, implement this function"""
status = gr.Markdown.update()
if files:
construct_index(self.api_key, files=files)
status = i18n("索引构建完成")
return gr.Files.update(), chatbot, status
def prepare_inputs(
self, real_inputs, use_websearch,
files, reply_language, chatbot,
load_from_cache_if_possible=True,
):
display_append = []
limited_context = False
if type(real_inputs) == list:
fake_inputs = real_inputs[0]["text"]
else:
fake_inputs = real_inputs
if files:
from langchain.vectorstores.base import VectorStoreRetriever
from langchain.retrievers import BM25Retriever, EnsembleRetriever
limited_context = True
msg = "加载索引中……"
logger.info(msg)
index, documents = construct_index(
self.api_key,
files=files,
load_from_cache_if_possible=load_from_cache_if_possible,
)
assert index is not None, "获取索引失败"
msg = "索引获取成功,生成回答中……"
logger.info(msg)
file_text = " ".join([d.page_content for d in documents])
file_text_token_limit = self.token_upper_limit / 2 # 文档的token上限为模型token上限的一半
if self.count_token(file_text) > file_text_token_limit:
# 文档token数超限使用检索匹配,否则用知识库文件的全部数据做rag
with retrieve_proxy():
if local_embedding:
k = 3
score_threshold = 0.4
vec_retriever = VectorStoreRetriever(
vectorstore=index,
search_type="similarity_score_threshold",
search_kwargs={"k": k, "score_threshold": score_threshold}
)
bm25_retriever = BM25Retriever.from_documents(
documents,
preprocess_func=chinese_preprocessing_func
)
bm25_retriever.k = k
retriever = EnsembleRetriever(
retrievers=[bm25_retriever, vec_retriever],
weights=[0.5, 0.5],
)
else:
k = 5
retriever = VectorStoreRetriever(
vectorstore=index,
search_type="similarity",
search_kwargs={"k": k}
)
try:
relevant_documents = retriever.get_relevant_documents(fake_inputs)
except:
return self.prepare_inputs(
fake_inputs,
use_websearch,
files,
reply_language,
chatbot,
load_from_cache_if_possible=False,
)
else:
relevant_documents = documents
reference_results = [
[d.page_content.strip("�"), os.path.basename(d.metadata["source"])]
for d in relevant_documents
]
reference_results = add_source_numbers(reference_results)
display_append = add_details(reference_results)
display_append = "\n\n" + "".join(display_append)
if type(real_inputs) == list:
real_inputs[0]["text"] = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", fake_inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
real_inputs = (
replace_today(PROMPT_TEMPLATE)
.replace("{query_str}", real_inputs)
.replace("{context_str}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
elif use_websearch:
if websearch_engine == "google":
search_results = search_with_google(fake_inputs, google_search_api_key, google_search_cx)
elif websearch_engine == "bing":
search_results = search_with_bing(fake_inputs, bing_search_api_key)
elif websearch_engine == "searchapi":
search_results = search_with_searchapi(fake_inputs, searchapi_api_key)
elif websearch_engine == "serper":
search_results = search_with_serper(fake_inputs, serper_search_api_key)
else:
search_results = search_with_duckduckgo(fake_inputs)
reference_results = []
for idx, result in enumerate(search_results):
logger.debug(f"搜索结果{idx + 1}:{result}")
reference_results.append([result["snippet"], result["url"]])
display_append.append(
f"{idx + 1}. {result['name']}"
)
reference_results = add_source_numbers(reference_results)
display_append = (
'' + "".join(display_append) + "
"
)
if type(real_inputs) == list:
real_inputs[0]["text"] = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", fake_inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
real_inputs = (
replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
.replace("{query}", fake_inputs)
.replace("{web_results}", "\n\n".join(reference_results))
.replace("{reply_language}", reply_language)
)
else:
display_append = ""
return limited_context, fake_inputs, display_append, real_inputs, chatbot
def predict(
self,
inputs,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
should_check_token_count=True,
):
status_text = "开始生成回答……"
if type(inputs) == list:
logger.info(f"用户{self.user_name}的输入为:{inputs[0]['text']}")
else:
logger.info(f"用户{self.user_name}的输入为:{inputs}")
if should_check_token_count:
if type(inputs) == list:
yield chatbot + [(inputs[0]["text"], "")], status_text
else:
yield chatbot + [(inputs, "")], status_text
if reply_language == "跟随问题语言(不稳定)":
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(
real_inputs=inputs,
use_websearch=use_websearch,
files=files,
reply_language=reply_language,
chatbot=chatbot
)
yield chatbot + [(fake_inputs, "")], status_text
if (
self.need_api_key and
self.api_key is None
and not shared.state.multi_api_key
):
status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG
logger.info(status_text)
chatbot.append((inputs, ""))
if len(self.history) == 0:
self.history.append(construct_user(inputs))
self.history.append("")
self.all_token_counts.append(0)
else:
self.history[-2] = construct_user(inputs)
yield chatbot + [(inputs, "")], status_text
return
elif len(inputs.strip()) == 0:
status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG
logger.info(status_text)
yield chatbot + [(inputs, "")], status_text
return
if self.single_turn:
self.history = []
self.all_token_counts = []
if type(inputs) == list:
self.history.append(inputs)
else:
self.history.append(construct_user(inputs))
try:
if stream:
logger.debug("使用流式传输")
iter = self.stream_next_chatbot(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
for chatbot, status_text in iter:
yield chatbot, status_text
else:
logger.debug("不使用流式传输")
chatbot, status_text = self.next_chatbot_at_once(
inputs,
chatbot,
fake_input=fake_inputs,
display_append=display_append,
)
yield chatbot, status_text
except Exception as e:
traceback.print_exc()
status_text = STANDARD_ERROR_MSG + str(e)
yield chatbot, status_text
if len(self.history) > 1 and self.history[-1]["content"] != inputs:
logger.info(f"回答为:{self.history[-1]['content']}")
if limited_context:
self.history = []
self.all_token_counts = []
max_token = self.token_upper_limit - TOKEN_OFFSET
if sum(self.all_token_counts) > max_token and len(self.history) > 2 and should_check_token_count:
count = 0
while (
sum(self.all_token_counts)
> self.token_upper_limit * REDUCE_TOKEN_FACTOR
and sum(self.all_token_counts) > 0 and len(self.history) > 0
):
count += 1
del self.all_token_counts[:1]
del self.history[:2]
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
logger.info(status_text)
yield chatbot, status_text
def retry(
self,
chatbot,
stream=False,
use_websearch=False,
files=None,
reply_language="中文",
):
logger.debug("重试中……")
if len(self.history) > 1:
inputs = self.history[-2]["content"]
del self.history[-2:]
if len(self.all_token_counts) > 0:
self.all_token_counts.pop()
elif len(chatbot) > 0:
inputs = chatbot[-1][0]
if '' in inputs:
inputs = inputs.split('
')[1]
inputs = inputs.split("
")[0]
elif len(self.history) == 1:
inputs = self.history[-1]["content"]
del self.history[-1]
else:
yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的"
return
iter = self.predict(
inputs,
chatbot,
stream=stream,
use_websearch=use_websearch,
files=files,
reply_language=reply_language,
)
for x in iter:
yield x
logger.debug("重试完毕")
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
def set_token_upper_limit(self, new_upper_limit):
self.token_upper_limit = new_upper_limit
logger.info(f"token上限设置为{new_upper_limit}")
self.auto_save()
def set_temperature(self, new_temperature):
self.temperature = new_temperature
self.auto_save()
def set_top_p(self, new_top_p):
self.top_p = new_top_p
self.auto_save()
def set_n_choices(self, new_n_choices):
self.n_choices = new_n_choices
self.auto_save()
def set_stop_sequence(self, new_stop_sequence: str):
new_stop_sequence = new_stop_sequence.split(",")
self.stop_sequence = new_stop_sequence
self.auto_save()
def set_max_tokens(self, new_max_tokens):
self.max_generation_token = new_max_tokens
self.auto_save()
def set_presence_penalty(self, new_presence_penalty):
self.presence_penalty = new_presence_penalty
self.auto_save()
def set_frequency_penalty(self, new_frequency_penalty):
self.frequency_penalty = new_frequency_penalty
self.auto_save()
def set_logit_bias(self, logit_bias):
self.logit_bias = logit_bias
self.auto_save()
def encoded_logit_bias(self):
if self.logit_bias is None:
return {}
logit_bias = self.logit_bias.split()
bias_map = {}
encoding = tiktoken.get_encoding("cl100k_base")
for line in logit_bias:
word, bias_amount = line.split(":")
if word:
for token in encoding.encode(word):
bias_map[token] = float(bias_amount)
return bias_map
def set_user_identifier(self, new_user_identifier):
self.user_identifier = new_user_identifier
self.auto_save()
def set_system_prompt(self, new_system_prompt):
self.system_prompt = new_system_prompt
self.auto_save()
def set_key(self, new_access_key):
self.api_key = new_access_key.strip()
msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key)
logger.info(msg)
return self.api_key, msg
def set_single_turn(self, new_single_turn):
self.single_turn = new_single_turn
self.auto_save()
def reset(self, remain_system_prompt=False):
self.history = []
self.all_token_counts = []
self.interrupted = False
self.history_file_path = new_auto_history_filename(self.user_name)
history_name = self.history_file_path[:-5]
choices = get_history_names(self.user_name)
if history_name not in choices:
choices.insert(0, history_name)
system_prompt = self.system_prompt if remain_system_prompt else ""
self.single_turn = self.default_single_turn
self.temperature = self.default_temperature
self.top_p = self.default_top_p
self.n_choices = self.default_n_choices
self.stop_sequence = self.default_stop_sequence
self.max_generation_token = self.default_max_generation_token
self.presence_penalty = self.default_presence_penalty
self.frequency_penalty = self.default_frequency_penalty
self.logit_bias = self.default_logit_bias
self.user_identifier = self.default_user_identifier
return (
[],
self.token_message([0]),
gr.Radio.update(choices=choices, value=history_name),
system_prompt,
self.single_turn,
self.temperature,
self.top_p,
self.n_choices,
self.stop_sequence,
self.token_upper_limit,
self.max_generation_token,
self.presence_penalty,
self.frequency_penalty,
self.logit_bias,
self.user_identifier,
)
def delete_first_conversation(self):
if self.history:
del self.history[:2]
del self.all_token_counts[:1]
return self.token_message()
def delete_last_conversation(self, chatbot):
if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]:
msg = "由于包含报错信息,只删除chatbot记录"
chatbot = chatbot[:-1]
return chatbot, self.history
if len(self.history) > 0:
self.history = self.history[:-2]
if len(chatbot) > 0:
msg = "删除了一组chatbot对话"
chatbot = chatbot[:-1]
if len(self.all_token_counts) > 0:
msg = "删除了一组对话的token计数记录"
self.all_token_counts.pop()
msg = "删除了一组对话"
self.chatbot = chatbot
self.auto_save(chatbot)
return chatbot, msg
def token_message(self, token_lst=None):
if token_lst is None:
token_lst = self.all_token_counts
token_sum = 0
for i in range(len(token_lst)):
token_sum += sum(token_lst[: i + 1])
return (
i18n("Token 计数: ")
+ f"{sum(token_lst)}"
+ i18n(",本次对话累计消耗了 ")
+ f"{token_sum} tokens"
)
def rename_chat_history(self, filename, chatbot):
if filename == "":
return gr.update()
if not filename.endswith(".json"):
filename += ".json"
self.delete_chat_history(self.history_file_path)
# 命名重复检测
repeat_file_index = 2
full_path = os.path.join(HISTORY_DIR, self.user_name, filename)
while os.path.exists(full_path):
full_path = os.path.join(
HISTORY_DIR, self.user_name, f"{repeat_file_index}_{filename}"
)
repeat_file_index += 1
filename = os.path.basename(full_path)
self.history_file_path = filename
save_file(filename, self, chatbot)
return init_history_list(self.user_name)
def auto_name_chat_history(
self, name_chat_method, user_question, chatbot, single_turn_checkbox
):
if len(self.history) == 2 and not single_turn_checkbox:
user_question = self.history[0]["content"]
if type(user_question) == list:
user_question = user_question[0]["text"]
filename = replace_special_symbols(user_question)[:16] + ".json"
return self.rename_chat_history(filename, chatbot)
else:
return gr.update()
def auto_save(self, chatbot=None):
if chatbot is not None:
save_file(self.history_file_path, self, chatbot)
def export_markdown(self, filename, chatbot):
if filename == "":
return
if not filename.endswith(".md"):
filename += ".md"
save_file(filename, self, chatbot)
def load_chat_history(self, new_history_file_path=None):
logger.debug(f"{self.user_name} 加载对话历史中……")
if new_history_file_path is not None:
if type(new_history_file_path) != str:
# copy file from new_history_file_path.name to os.path.join(HISTORY_DIR, self.user_name)
new_history_file_path = new_history_file_path.name
shutil.copyfile(
new_history_file_path,
os.path.join(
HISTORY_DIR,
self.user_name,
os.path.basename(new_history_file_path),
),
)
self.history_file_path = os.path.basename(new_history_file_path)
else:
self.history_file_path = new_history_file_path
try:
if self.history_file_path == os.path.basename(self.history_file_path):
history_file_path = os.path.join(
HISTORY_DIR, self.user_name, self.history_file_path
)
else:
history_file_path = self.history_file_path
if not self.history_file_path.endswith(".json"):
history_file_path += ".json"
saved_json = {}
if os.path.exists(history_file_path):
with open(history_file_path, "r", encoding="utf-8") as f:
saved_json = json.load(f)
try:
if type(saved_json["history"][0]) == str:
logger.info("历史记录格式为旧版,正在转换……")
new_history = []
for index, item in enumerate(saved_json["history"]):
if index % 2 == 0:
new_history.append(construct_user(item))
else:
new_history.append(construct_assistant(item))
saved_json["history"] = new_history
logger.info(new_history)
except:
pass
if len(saved_json["chatbot"]) < len(saved_json["history"]) // 2:
logger.info("Trimming corrupted history...")
saved_json["history"] = saved_json["history"][-len(saved_json["chatbot"]):]
logger.info(f"Trimmed history: {saved_json['history']}")
logger.debug(f"{self.user_name} 加载对话历史完毕")
self.history = saved_json["history"]
self.single_turn = saved_json.get("single_turn", self.single_turn)
self.temperature = saved_json.get("temperature", self.temperature)
self.top_p = saved_json.get("top_p", self.top_p)
self.n_choices = saved_json.get("n_choices", self.n_choices)
self.stop_sequence = list(saved_json.get("stop_sequence", self.stop_sequence))
self.token_upper_limit = saved_json.get(
"token_upper_limit", self.token_upper_limit
)
self.max_generation_token = saved_json.get(
"max_generation_token", self.max_generation_token
)
self.presence_penalty = saved_json.get(
"presence_penalty", self.presence_penalty
)
self.frequency_penalty = saved_json.get(
"frequency_penalty", self.frequency_penalty
)
self.logit_bias = saved_json.get("logit_bias", self.logit_bias)
self.user_identifier = saved_json.get("user_identifier", self.user_name)
self.metadata = saved_json.get("metadata", self.metadata)
self.chatbot = saved_json["chatbot"]
return (
os.path.basename(self.history_file_path)[:-5],
saved_json["system"],
saved_json["chatbot"],
self.single_turn,
self.temperature,
self.top_p,
self.n_choices,
",".join(self.stop_sequence),
self.token_upper_limit,
self.max_generation_token,
self.presence_penalty,
self.frequency_penalty,
self.logit_bias,
self.user_identifier,
)
except:
# 没有对话历史或者对话历史解析失败
logger.info(f"没有找到对话历史记录 {self.history_file_path}")
self.reset()
return (
os.path.basename(self.history_file_path),
"",
[],
self.single_turn,
self.temperature,
self.top_p,
self.n_choices,
",".join(self.stop_sequence),
self.token_upper_limit,
self.max_generation_token,
self.presence_penalty,
self.frequency_penalty,
self.logit_bias,
self.user_identifier,
)
def delete_chat_history(self, filename):
if filename == "CANCELED":
return gr.update(), gr.update(), gr.update()
if filename == "":
return i18n("你没有选择任何对话历史"), gr.update(), gr.update()
if filename and not filename.endswith(".json"):
filename += ".json"
if filename == os.path.basename(filename):
history_file_path = os.path.join(HISTORY_DIR, self.user_name, filename)
else:
history_file_path = filename
md_history_file_path = history_file_path[:-5] + ".md"
try:
os.remove(history_file_path)
os.remove(md_history_file_path)
return i18n("删除对话历史成功"), get_history_list(self.user_name), []
except:
logger.info(f"删除对话历史失败 {history_file_path}")
return (
i18n("对话历史") + filename + i18n("已经被删除啦"),
get_history_list(self.user_name),
[],
)
def auto_load(self):
self.history_file_path = new_auto_history_filename(self.user_name)
return self.load_chat_history()
def like(self):
"""like the last response, implement if needed"""
return gr.update()
def dislike(self):
"""dislike the last response, implement if needed"""
return gr.update()
def deinitialize(self):
"""deinitialize the model, implement if needed"""
pass