#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os import pickle import time import random # In[8]: import PIL from PIL import Image from tensorflow import keras import keras.backend as K import tensorflow as tf from keras.optimizers import Adam from keras.models import Sequential from keras import layers,Model,Input from keras.layers import Lambda,Reshape,UpSampling2D,ReLU,add,ZeroPadding2D from keras.layers import Activation,BatchNormalization,Concatenate,concatenate from keras.layers import Dense,Conv2D,Flatten,Dropout,LeakyReLU from keras.preprocessing.image import ImageDataGenerator # ### Conditioning Augmentation Network # In[3]: # conditioned by the text. def conditioning_augmentation(x): """The mean_logsigma passed as argument is converted into the text conditioning variable. Args: x: The output of the text embedding passed through a FC layer with LeakyReLU non-linearity. Returns: c: The text conditioning variable after computation. """ mean = x[:, :128] log_sigma = x[:, 128:] stddev = tf.math.exp(log_sigma) epsilon = K.random_normal(shape=K.constant((mean.shape[1], ), dtype='int32')) c = mean + stddev * epsilon return c def build_ca_network(): """Builds the conditioning augmentation network. """ input_layer1 = Input(shape=(1024,)) #size of the vocabulary in the text data mls = Dense(256)(input_layer1) mls = LeakyReLU(alpha=0.2)(mls) ca = Lambda(conditioning_augmentation)(mls) return Model(inputs=[input_layer1], outputs=[ca]) # ### Stage 1 Generator Network # In[4]: def UpSamplingBlock(x, num_kernels): """An Upsample block with Upsampling2D, Conv2D, BatchNormalization and a ReLU activation. Args: x: The preceding layer as input. num_kernels: Number of kernels for the Conv2D layer. Returns: x: The final activation layer after the Upsampling block. """ x = UpSampling2D(size=(2,2))(x) x = Conv2D(num_kernels, kernel_size=(3,3), padding='same', strides=1, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) #prevent from mode collapse x = ReLU()(x) return x def build_stage1_generator(): input_layer1 = Input(shape=(1024,)) ca = Dense(256)(input_layer1) ca = LeakyReLU(alpha=0.2)(ca) # Obtain the conditioned text c = Lambda(conditioning_augmentation)(ca) input_layer2 = Input(shape=(100,)) concat = Concatenate(axis=1)([c, input_layer2]) x = Dense(16384, use_bias=False)(concat) x = ReLU()(x) x = Reshape((4, 4, 1024), input_shape=(16384,))(x) x = UpSamplingBlock(x, 512) x = UpSamplingBlock(x, 256) x = UpSamplingBlock(x, 128) x = UpSamplingBlock(x, 64) # upsampled our image to 64*64*3 x = Conv2D(3, kernel_size=3, padding='same', strides=1, use_bias=False, kernel_initializer='he_uniform')(x) x = Activation('tanh')(x) stage1_gen = Model(inputs=[input_layer1, input_layer2], outputs=[x, ca]) return stage1_gen # In[5]: generator = build_stage1_generator() generator.summary() # ### Stage 1 Discriminator Network # In[9]: def ConvBlock(x, num_kernels, kernel_size=(4,4), strides=2, activation=True): """A ConvBlock with a Conv2D, BatchNormalization and LeakyReLU activation. Args: x: The preceding layer as input. num_kernels: Number of kernels for the Conv2D layer. Returns: x: The final activation layer after the ConvBlock block. """ x = Conv2D(num_kernels, kernel_size=kernel_size, padding='same', strides=strides, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) if activation: x = LeakyReLU(alpha=0.2)(x) return x def build_embedding_compressor(): """Build embedding compressor model """ input_layer1 = Input(shape=(1024,)) x = Dense(128)(input_layer1) x = ReLU()(x) model = Model(inputs=[input_layer1], outputs=[x]) return model # the discriminator is fed with two inputs, the feature from Generator and the text embedding def build_stage1_discriminator(): """Builds the Stage 1 Discriminator that uses the 64x64 resolution images from the generator and the compressed and spatially replicated embedding. Returns: Stage 1 Discriminator Model for StackGAN. """ input_layer1 = Input(shape=(64, 64, 3)) x = Conv2D(64, kernel_size=(4,4), strides=2, padding='same', use_bias=False, kernel_initializer='he_uniform')(input_layer1) x = LeakyReLU(alpha=0.2)(x) x = ConvBlock(x, 128) x = ConvBlock(x, 256) x = ConvBlock(x, 512) # Obtain the compressed and spatially replicated text embedding input_layer2 = Input(shape=(4, 4, 128)) #2nd input to discriminator, text embedding concat = concatenate([x, input_layer2]) x1 = Conv2D(512, kernel_size=(1,1), padding='same', strides=1, use_bias=False, kernel_initializer='he_uniform')(concat) x1 = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x1 = LeakyReLU(alpha=0.2)(x) # Flatten and add a FC layer to predict. x1 = Flatten()(x1) x1 = Dense(1)(x1) x1 = Activation('sigmoid')(x1) stage1_dis = Model(inputs=[input_layer1, input_layer2], outputs=[x1]) return stage1_dis # In[10]: discriminator = build_stage1_discriminator() discriminator.summary() # ### Stage 1 Adversarial Model (Building a GAN) # In[11]: # Building GAN with Generator and Discriminator def build_adversarial(generator_model, discriminator_model): """Stage 1 Adversarial model. Args: generator_model: Stage 1 Generator Model discriminator_model: Stage 1 Discriminator Model Returns: Adversarial Model. """ input_layer1 = Input(shape=(1024,)) input_layer2 = Input(shape=(100,)) input_layer3 = Input(shape=(4, 4, 128)) x, ca = generator_model([input_layer1, input_layer2]) #text,noise discriminator_model.trainable = False probabilities = discriminator_model([x, input_layer3]) adversarial_model = Model(inputs=[input_layer1, input_layer2, input_layer3], outputs=[probabilities, ca]) return adversarial_model # In[12]: ganstage1 = build_adversarial(generator, discriminator) ganstage1.summary() # ### Train Utilities # In[13]: def checkpoint_prefix(): checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt') return checkpoint_prefix def adversarial_loss(y_true, y_pred): mean = y_pred[:, :128] ls = y_pred[:, 128:] loss = -ls + 0.5 * (-1 + tf.math.exp(2.0 * ls) + tf.math.square(mean)) loss = K.mean(loss) return loss def normalize(input_image, real_image): input_image = (input_image / 127.5) - 1 real_image = (real_image / 127.5) - 1 return input_image, real_image def load_class_ids_filenames(class_id_path, filename_path): with open(class_id_path, 'rb') as file: class_id = pickle.load(file, encoding='latin1') with open(filename_path, 'rb') as file: filename = pickle.load(file, encoding='latin1') return class_id, filename def load_text_embeddings(text_embeddings): with open(text_embeddings, 'rb') as file: embeds = pickle.load(file, encoding='latin1') embeds = np.array(embeds) return embeds def load_bbox(data_path): bbox_path = data_path + '/bounding_boxes.txt' image_path = data_path + '/images.txt' bbox_df = pd.read_csv(bbox_path, delim_whitespace=True, header=None).astype(int) filename_df = pd.read_csv(image_path, delim_whitespace=True, header=None) filenames = filename_df[1].tolist() bbox_dict = {i[:-4]:[] for i in filenames[:2]} for i in range(0, len(filenames)): bbox = bbox_df.iloc[i][1:].tolist() dict_key = filenames[i][:-4] bbox_dict[dict_key] = bbox return bbox_dict def load_images(image_path, bounding_box, size): """Crops the image to the bounding box and then resizes it. """ image = Image.open(image_path).convert('RGB') w, h = image.size if bounding_box is not None: r = int(np.maximum(bounding_box[2], bounding_box[3]) * 0.75) c_x = int((bounding_box[0] + bounding_box[2]) / 2) c_y = int((bounding_box[1] + bounding_box[3]) / 2) y1 = np.maximum(0, c_y - r) y2 = np.minimum(h, c_y + r) x1 = np.maximum(0, c_x - r) x2 = np.minimum(w, c_x + r) image = image.crop([x1, y1, x2, y2]) image = image.resize(size, PIL.Image.BILINEAR) return image def load_data(filename_path, class_id_path, dataset_path, embeddings_path, size): """Loads the Dataset. """ data_dir = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/birds" train_dir = data_dir + "/train" test_dir = data_dir + "/test" embeddings_path_train = train_dir + "/char-CNN-RNN-embeddings.pickle" embeddings_path_test = test_dir + "/char-CNN-RNN-embeddings.pickle" filename_path_train = train_dir + "/filenames.pickle" filename_path_test = test_dir + "/filenames.pickle" class_id_path_train = train_dir + "/class_info.pickle" class_id_path_test = test_dir + "/class_info.pickle" dataset_path = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/CUB_200_2011" class_id, filenames = load_class_ids_filenames(class_id_path, filename_path) embeddings = load_text_embeddings(embeddings_path) bbox_dict = load_bbox(dataset_path) x, y, embeds = [], [], [] for i, filename in enumerate(filenames): bbox = bbox_dict[filename] try: image_path = f'{dataset_path}/images/{filename}.jpg' image = load_images(image_path, bbox, size) e = embeddings[i, :, :] embed_index = np.random.randint(0, e.shape[0] - 1) embed = e[embed_index, :] x.append(np.array(image)) y.append(class_id[i]) embeds.append(embed) except Exception as e: print(f'{e}') x = np.array(x) y = np.array(y) embeds = np.array(embeds) return x, y, embeds def save_image(file, save_path): """Saves the image at the specified file path. """ image = plt.figure() ax = image.add_subplot(1,1,1) ax.imshow(file) ax.axis("off") plt.savefig(save_path) # In[28]: ############################################################ # StackGAN class ############################################################ class StackGanStage1(object): """StackGAN Stage 1 class.""" data_dir = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/birds" train_dir = data_dir + "/train" test_dir = data_dir + "/test" embeddings_path_train = train_dir + "/char-CNN-RNN-embeddings.pickle" embeddings_path_test = test_dir + "/char-CNN-RNN-embeddings.pickle" filename_path_train = train_dir + "/filenames.pickle" filename_path_test = test_dir + "/filenames.pickle" class_id_path_train = train_dir + "/class_info.pickle" class_id_path_test = test_dir + "/class_info.pickle" dataset_path = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/CUB_200_2011" def __init__(self, epochs=500, z_dim=100, batch_size=64, enable_function=True, stage1_generator_lr=0.0002, stage1_discriminator_lr=0.0002): self.epochs = epochs self.z_dim = z_dim self.enable_function = enable_function self.stage1_generator_lr = stage1_generator_lr self.stage1_discriminator_lr = stage1_discriminator_lr self.image_size = 64 self.conditioning_dim = 128 self.batch_size = batch_size self.stage1_generator_optimizer = Adam(lr=stage1_generator_lr, beta_1=0.5, beta_2=0.999) self.stage1_discriminator_optimizer = Adam(lr=stage1_discriminator_lr, beta_1=0.5, beta_2=0.999) self.stage1_generator = build_stage1_generator() self.stage1_generator.compile(loss='mse', optimizer=self.stage1_generator_optimizer) self.stage1_discriminator = build_stage1_discriminator() self.stage1_discriminator.compile(loss='binary_crossentropy', optimizer=self.stage1_discriminator_optimizer) self.ca_network = build_ca_network() self.ca_network.compile(loss='binary_crossentropy', optimizer='Adam') self.embedding_compressor = build_embedding_compressor() self.embedding_compressor.compile(loss='binary_crossentropy', optimizer='Adam') self.stage1_adversarial = build_adversarial(self.stage1_generator, self.stage1_discriminator) self.stage1_adversarial.compile(loss=['binary_crossentropy', adversarial_loss], loss_weights=[1, 2.0], optimizer=self.stage1_generator_optimizer) self.checkpoint1 = tf.train.Checkpoint( generator_optimizer=self.stage1_generator_optimizer, discriminator_optimizer=self.stage1_discriminator_optimizer, generator=self.stage1_generator, discriminator=self.stage1_discriminator) def visualize_stage1(self): """Running Tensorboard visualizations. """ tb = TensorBoard(log_dir="logs/".format(time.time())) tb.set_model(self.stage1_generator) tb.set_model(self.stage1_discriminator) tb.set_model(self.ca_network) tb.set_model(self.embedding_compressor) def train_stage1(self): """Trains the stage1 StackGAN. """ x_train, y_train, train_embeds = load_data(filename_path=filename_path_train, class_id_path=class_id_path_train, dataset_path=dataset_path, embeddings_path=embeddings_path_train, size=(64, 64)) x_test, y_test, test_embeds = load_data(filename_path=filename_path_test, class_id_path=class_id_path_test, dataset_path=dataset_path, embeddings_path=embeddings_path_test, size=(64, 64)) real = np.ones((self.batch_size, 1), dtype='float') * 0.9 fake = np.zeros((self.batch_size, 1), dtype='float') * 0.1 for epoch in range(self.epochs): print(f'Epoch: {epoch}') gen_loss = [] dis_loss = [] num_batches = int(x_train.shape[0] / self.batch_size) for i in range(num_batches): latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim)) embedding_text = train_embeds[i * self.batch_size:(i + 1) * self.batch_size] compressed_embedding = self.embedding_compressor.predict_on_batch(embedding_text) compressed_embedding = np.reshape(compressed_embedding, (-1, 1, 1, 128)) compressed_embedding = np.tile(compressed_embedding, (1, 4, 4, 1)) image_batch = x_train[i * self.batch_size:(i+1) * self.batch_size] image_batch = (image_batch - 127.5) / 127.5 gen_images, _ = self.stage1_generator.predict([embedding_text, latent_space]) discriminator_loss = self.stage1_discriminator.train_on_batch([image_batch, compressed_embedding], np.reshape(real, (self.batch_size, 1))) discriminator_loss_gen = self.stage1_discriminator.train_on_batch([gen_images, compressed_embedding], np.reshape(fake, (self.batch_size, 1))) discriminator_loss_wrong = self.stage1_discriminator.train_on_batch([gen_images[: self.batch_size-1], compressed_embedding[1:]], np.reshape(fake[1:], (self.batch_size-1, 1))) # Discriminator loss d_loss = 0.5 * np.add(discriminator_loss, 0.5 * np.add(discriminator_loss_gen, discriminator_loss_wrong)) dis_loss.append(d_loss) print(f'Discriminator Loss: {d_loss}') # Generator loss g_loss = self.stage1_adversarial.train_on_batch([embedding_text, latent_space, compressed_embedding], [K.ones((self.batch_size, 1)) * 0.9, K.ones((self.batch_size, 256)) * 0.9]) print(f'Generator Loss: {g_loss}') gen_loss.append(g_loss) if epoch % 5 == 0: latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim)) embedding_batch = test_embeds[0 : self.batch_size] gen_images, _ = self.stage1_generator.predict_on_batch([embedding_batch, latent_space]) for i, image in enumerate(gen_images[:10]): save_image(image, f'test/gen_1_{epoch}_{i}') if epoch % 25 == 0: self.stage1_generator.save_weights('weights/stage1_gen.h5') self.stage1_discriminator.save_weights("weights/stage1_disc.h5") self.ca_network.save_weights('weights/stage1_ca.h5') self.embedding_compressor.save_weights('weights/stage1_embco.h5') self.stage1_adversarial.save_weights('weights/stage1_adv.h5') self.stage1_generator.save_weights('weights/stage1_gen.h5') self.stage1_discriminator.save_weights("weights/stage1_disc.h5") # In[ ]: stage1 = StackGanStage1() stage1.train_stage1() # ### Check test folder for gernerated images from Stage1 Generator # ### Let's Implement Stage 2 Generator # In[29]: ############################################################ # Stage 2 Generator Network ############################################################ def concat_along_dims(inputs): """Joins the conditioned text with the encoded image along the dimensions. Args: inputs: consisting of conditioned text and encoded images as [c,x]. Returns: Joint block along the dimensions. """ c = inputs[0] x = inputs[1] c = K.expand_dims(c, axis=1) c = K.expand_dims(c, axis=1) c = K.tile(c, [1, 16, 16, 1]) return K.concatenate([c, x], axis = 3) def residual_block(input): """Residual block with plain identity connections. Args: inputs: input layer or an encoded layer Returns: Layer with computed identity mapping. """ x = Conv2D(512, kernel_size=(3,3), padding='same', use_bias=False, kernel_initializer='he_uniform')(input) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) x = Conv2D(512, kernel_size=(3,3), padding='same', use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = add([x, input]) x = ReLU()(x) return x def build_stage2_generator(): """Build the Stage 2 Generator Network using the conditioning text and images from stage 1. Returns: Stage 2 Generator Model for StackGAN. """ input_layer1 = Input(shape=(1024,)) input_images = Input(shape=(64, 64, 3)) # Conditioning Augmentation ca = Dense(256)(input_layer1) mls = LeakyReLU(alpha=0.2)(ca) c = Lambda(conditioning_augmentation)(mls) # Downsampling block x = ZeroPadding2D(padding=(1,1))(input_images) x = Conv2D(128, kernel_size=(3,3), strides=1, use_bias=False, kernel_initializer='he_uniform')(x) x = ReLU()(x) x = ZeroPadding2D(padding=(1,1))(x) x = Conv2D(256, kernel_size=(4,4), strides=2, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) x = ZeroPadding2D(padding=(1,1))(x) x = Conv2D(512, kernel_size=(4,4), strides=2, use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) # Concatenate text conditioning block with the encoded image concat = concat_along_dims([c, x]) # Residual Blocks x = ZeroPadding2D(padding=(1,1))(concat) x = Conv2D(512, kernel_size=(3,3), use_bias=False, kernel_initializer='he_uniform')(x) x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) x = ReLU()(x) x = residual_block(x) x = residual_block(x) x = residual_block(x) x = residual_block(x) # Upsampling Blocks x = UpSamplingBlock(x, 512) x = UpSamplingBlock(x, 256) x = UpSamplingBlock(x, 128) x = UpSamplingBlock(x, 64) x = Conv2D(3, kernel_size=(3,3), padding='same', use_bias=False, kernel_initializer='he_uniform')(x) x = Activation('tanh')(x) stage2_gen = Model(inputs=[input_layer1, input_images], outputs=[x, mls]) return stage2_gen # In[30]: generator_stage2 = build_stage2_generator() generator_stage2.summary() # In[31]: ############################################################ # Stage 2 Discriminator Network ############################################################ def build_stage2_discriminator(): """Builds the Stage 2 Discriminator that uses the 256x256 resolution images from the generator and the compressed and spatially replicated embeddings. Returns: Stage 2 Discriminator Model for StackGAN. """ input_layer1 = Input(shape=(256, 256, 3)) x = Conv2D(64, kernel_size=(4,4), padding='same', strides=2, use_bias=False, kernel_initializer='he_uniform')(input_layer1) x = LeakyReLU(alpha=0.2)(x) x = ConvBlock(x, 128) x = ConvBlock(x, 256) x = ConvBlock(x, 512) x = ConvBlock(x, 1024) x = ConvBlock(x, 2048) x = ConvBlock(x, 1024, (1,1), 1) x = ConvBlock(x, 512, (1,1), 1, False) x1 = ConvBlock(x, 128, (1,1), 1) x1 = ConvBlock(x1, 128, (3,3), 1) x1 = ConvBlock(x1, 512, (3,3), 1, False) x2 = add([x, x1]) x2 = LeakyReLU(alpha=0.2)(x2) # Concatenate compressed and spatially replicated embedding input_layer2 = Input(shape=(4, 4, 128)) concat = concatenate([x2, input_layer2]) x3 = Conv2D(512, kernel_size=(1,1), strides=1, padding='same', kernel_initializer='he_uniform')(concat) x3 = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x3) x3 = LeakyReLU(alpha=0.2)(x3) # Flatten and add a FC layer x3 = Flatten()(x3) x3 = Dense(1)(x3) x3 = Activation('sigmoid')(x3) stage2_dis = Model(inputs=[input_layer1, input_layer2], outputs=[x3]) return stage2_dis # In[32]: discriminator_stage2 = build_stage2_discriminator() discriminator_stage2.summary() # In[33]: ############################################################ # Stage 2 Adversarial Model ############################################################ def stage2_adversarial_network(stage2_disc, stage2_gen, stage1_gen): """Stage 2 Adversarial Network. Args: stage2_disc: Stage 2 Discriminator Model. stage2_gen: Stage 2 Generator Model. stage1_gen: Stage 1 Generator Model. Returns: Stage 2 Adversarial network. """ conditioned_embedding = Input(shape=(1024, )) latent_space = Input(shape=(100, )) compressed_replicated = Input(shape=(4, 4, 128)) #the discriminator is trained separately and stage1_gen already trained, and this is the reason why we freeze its layers by setting the property trainable=false input_images, ca = stage1_gen([conditioned_embedding, latent_space]) stage2_disc.trainable = False stage1_gen.trainable = False images, ca2 = stage2_gen([conditioned_embedding, input_images]) probability = stage2_disc([images, compressed_replicated]) return Model(inputs=[conditioned_embedding, latent_space, compressed_replicated], outputs=[probability, ca2]) # In[34]: adversarial_stage2 = stage2_adversarial_network(discriminator_stage2, generator_stage2, generator) adversarial_stage2.summary() # In[35]: class StackGanStage2(object): """StackGAN Stage 2 class. Args: epochs: Number of epochs z_dim: Latent space dimensions batch_size: Batch Size enable_function: If True, training function is decorated with tf.function stage2_generator_lr: Learning rate for stage 2 generator stage2_discriminator_lr: Learning rate for stage 2 discriminator """ def __init__(self, epochs=500, z_dim=100, batch_size=64, enable_function=True, stage2_generator_lr=0.0002, stage2_discriminator_lr=0.0002): self.epochs = epochs self.z_dim = z_dim self.enable_function = enable_function self.stage1_generator_lr = stage2_generator_lr self.stage1_discriminator_lr = stage2_discriminator_lr self.low_image_size = 64 self.high_image_size = 256 self.conditioning_dim = 128 self.batch_size = batch_size self.stage2_generator_optimizer = Adam(lr=stage2_generator_lr, beta_1=0.5, beta_2=0.999) self.stage2_discriminator_optimizer = Adam(lr=stage2_discriminator_lr, beta_1=0.5, beta_2=0.999) self.stage1_generator = build_stage1_generator() self.stage1_generator.compile(loss='binary_crossentropy', optimizer=self.stage2_generator_optimizer) self.stage1_generator.load_weights('weights/stage1_gen.h5') self.stage2_generator = build_stage2_generator() self.stage2_generator.compile(loss='binary_crossentropy', optimizer=self.stage2_generator_optimizer) self.stage2_discriminator = build_stage2_discriminator() self.stage2_discriminator.compile(loss='binary_crossentropy', optimizer=self.stage2_discriminator_optimizer) self.ca_network = build_ca_network() self.ca_network.compile(loss='binary_crossentropy', optimizer='Adam') self.embedding_compressor = build_embedding_compressor() self.embedding_compressor.compile(loss='binary_crossentropy', optimizer='Adam') self.stage2_adversarial = stage2_adversarial_network(self.stage2_discriminator, self.stage2_generator, self.stage1_generator) self.stage2_adversarial.compile(loss=['binary_crossentropy', adversarial_loss], loss_weights=[1, 2.0], optimizer=self.stage2_generator_optimizer) self.checkpoint2 = tf.train.Checkpoint( generator_optimizer=self.stage2_generator_optimizer, discriminator_optimizer=self.stage2_discriminator_optimizer, generator=self.stage2_generator, discriminator=self.stage2_discriminator, generator1=self.stage1_generator) def visualize_stage2(self): """Running Tensorboard visualizations. """ tb = TensorBoard(log_dir="logs/".format(time.time())) tb.set_model(self.stage2_generator) tb.set_model(self.stage2_discriminator) def train_stage2(self): """Trains Stage 2 StackGAN. """ x_high_train, y_high_train, high_train_embeds = load_data(filename_path=filename_path_train, class_id_path=class_id_path_train, dataset_path=dataset_path, embeddings_path=embeddings_path_train, size=(256, 256)) x_high_test, y_high_test, high_test_embeds = load_data(filename_path=filename_path_test, class_id_path=class_id_path_test, dataset_path=dataset_path, embeddings_path=embeddings_path_test, size=(256, 256)) x_low_train, y_low_train, low_train_embeds = load_data(filename_path=filename_path_train, class_id_path=class_id_path_train, dataset_path=dataset_path, embeddings_path=embeddings_path_train, size=(64, 64)) x_low_test, y_low_test, low_test_embeds = load_data(filename_path=filename_path_test, class_id_path=class_id_path_test, dataset_path=dataset_path, embeddings_path=embeddings_path_test, size=(64, 64)) real = np.ones((self.batch_size, 1), dtype='float') * 0.9 fake = np.zeros((self.batch_size, 1), dtype='float') * 0.1 for epoch in range(self.epochs): print(f'Epoch: {epoch}') gen_loss = [] disc_loss = [] num_batches = int(x_high_train.shape[0] / self.batch_size) for i in range(num_batches): latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim)) embedding_text = high_train_embeds[i * self.batch_size:(i + 1) * self.batch_size] compressed_embedding = self.embedding_compressor.predict_on_batch(embedding_text) compressed_embedding = np.reshape(compressed_embedding, (-1, 1, 1, self.conditioning_dim)) compressed_embedding = np.tile(compressed_embedding, (1, 4, 4, 1)) image_batch = x_high_train[i * self.batch_size:(i+1) * self.batch_size] image_batch = (image_batch - 127.5) / 127.5 low_res_fakes, _ = self.stage1_generator.predict([embedding_text, latent_space], verbose=3) high_res_fakes, _ = self.stage2_generator.predict([embedding_text, low_res_fakes], verbose=3) discriminator_loss = self.stage2_discriminator.train_on_batch([image_batch, compressed_embedding], np.reshape(real, (self.batch_size, 1))) discriminator_loss_gen = self.stage2_discriminator.train_on_batch([high_res_fakes, compressed_embedding], np.reshape(fake, (self.batch_size, 1))) discriminator_loss_fake = self.stage2_discriminator.train_on_batch([image_batch[:(self.batch_size-1)], compressed_embedding[1:]], np.reshape(fake[1:], (self.batch_size - 1, 1))) d_loss = 0.5 * np.add(discriminator_loss, 0.5 * np.add(discriminator_loss_gen, discriminator_loss_fake)) disc_loss.append(d_loss) print(f'Discriminator Loss: {d_loss}') g_loss = self.stage2_adversarial.train_on_batch([embedding_text, latent_space, compressed_embedding], [K.ones((self.batch_size, 1)) * 0.9, K.ones((self.batch_size, 256)) * 0.9]) gen_loss.append(g_loss) print(f'Generator Loss: {g_loss}') if epoch % 5 == 0: latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim)) embedding_batch = high_test_embeds[0 : self.batch_size] low_fake_images, _ = self.stage1_generator.predict([embedding_batch, latent_space], verbose=3) high_fake_images, _ = self.stage2_generator.predict([embedding_batch, low_fake_images], verbose=3) for i, image in enumerate(high_fake_images[:10]): save_image(image, f'results_stage2/gen_{epoch}_{i}.png') if epoch % 10 == 0: self.stage2_generator.save_weights('weights/stage2_gen.h5') self.stage2_discriminator.save_weights("weights/stage2_disc.h5") self.ca_network.save_weights('weights/stage2_ca.h5') self.embedding_compressor.save_weights('weights/stage2_embco.h5') self.stage2_adversarial.save_weights('weights/stage2_adv.h5') self.stage2_generator.save_weights('weights/stage2_gen.h5') self.stage2_discriminator.save_weights("weights/stage2_disc.h5") # In[ ]: stage2 = StackGanStage2() stage2.train_stage2()