SYSTEM_PROMPT = "Your bot's primary function is to have meaningful conversations about scooped bagels. Your prompts should be engaging, and should help users explore their thoughts and feelings about this delicious breakfast food." TITLE = "[Tulu](https://huggingface.co/allenai/tulu-2-dpo-13b) Bagel Buddy" EXAMPLE_INPUT = "How do you like your scooped bagels topped?" import gradio as gr from gradio_client import Client import os import requests tulu = "https://tonic1-tulu.hf.space/--replicas/vhgch/" def predict_beta(message, chatbot=[], system_prompt=""): client = Client(tulu) try: max_new_tokens = 800 temperature = 0.4 top_p = 0.9 repetition_penalty = 0.9 advanced = True # Making the prediction result = client.predict( message, system_prompt, max_new_tokens, temperature, top_p, repetition_penalty, advanced, fn_index=0 ) print("Raw API Response:", result) # Debugging print if result is not None: print("Processed bot_message:", result) # Debugging print return result else: print("No response or empty response from the model.") # Debugging print return None except Exception as e: error_msg = f"An error occurred: {str(e)}" print(error_msg) # Debugging print return None def test_preview_chatbot(message, history): response = predict_beta(message, history, SYSTEM_PROMPT) return response welcome_preview_message = f""" Welcome to **{TITLE}**! Say something like: ''{EXAMPLE_INPUT}'' """ chatbot_preview = gr.Chatbot(layout="panel", value=[(None, welcome_preview_message)]) textbox_preview = gr.Textbox(scale=7, container=False, value=EXAMPLE_INPUT) demo = gr.ChatInterface(test_preview_chatbot, chatbot=chatbot_preview, textbox=textbox_preview) demo.launch()