#!/usr/bin/env python3 """ Quick Model Deployment Script Direct deployment without argument parsing issues """ import os import sys import logging from pathlib import Path # Add src to path for imports sys.path.append(os.path.join(os.path.dirname(__file__), 'src')) # Setup logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) def main(): """Direct deployment without argument parsing""" # Configuration MODEL_PATH = "/output-checkpoint" REPO_NAME = "Tonic/smollm3-finetuned" HF_TOKEN = os.getenv('HF_TOKEN') if not HF_TOKEN: logger.error("❌ HF_TOKEN not set") return 1 if not Path(MODEL_PATH).exists(): logger.error(f"❌ Model path not found: {MODEL_PATH}") return 1 logger.info("✅ Model files validated") # Import and run the recovery pipeline directly try: from recover_model import ModelRecoveryPipeline # Initialize pipeline pipeline = ModelRecoveryPipeline( model_path=MODEL_PATH, repo_name=REPO_NAME, hf_token=HF_TOKEN, private=False, quantize=True, quant_types=["int8_weight_only", "int4_weight_only"], author_name="Tonic", model_description="A fine-tuned SmolLM3 model for improved text generation and conversation capabilities" ) # Run the complete pipeline success = pipeline.run_complete_pipeline() if success: logger.info("✅ Model deployment completed successfully!") logger.info(f"🌐 View your model at: https://huggingface.co/{REPO_NAME}") return 0 else: logger.error("❌ Model deployment failed!") return 1 except Exception as e: logger.error(f"❌ Error during deployment: {e}") return 1 if __name__ == "__main__": exit(main())