""" GPT-OSS Basic Training Configuration Based on OpenAI's GPT-OSS fine-tuning tutorial Optimized for standard fine-tuning scenarios """ import os from dataclasses import dataclass from typing import Optional @dataclass class GPTOSSBasicConfig: """Basic configuration for GPT-OSS fine-tuning""" # Trainer type selection trainer_type: str = "sft" # "sft" or "dpo" # Model configuration - GPT-OSS specific model_name: str = "openai/gpt-oss-20b" max_seq_length: int = 2048 # GPT-OSS default use_flash_attention: bool = True use_gradient_checkpointing: bool = True # Training configuration - optimized for GPT-OSS batch_size: int = 4 # Conservative for 20B model gradient_accumulation_steps: int = 4 learning_rate: float = 2e-4 # Higher LR as per tutorial weight_decay: float = 0.01 warmup_steps: int = 100 max_iters: int = 1000 eval_interval: int = 100 log_interval: int = 10 save_interval: int = 500 # Optimizer configuration optimizer: str = "adamw_torch" beta1: float = 0.9 beta2: float = 0.95 eps: float = 1e-8 # Scheduler configuration scheduler: str = "cosine_with_min_lr" min_lr: float = 2e-5 # Higher min LR as per tutorial lr_scheduler_kwargs: dict = None # Mixed precision - GPT-OSS optimized fp16: bool = False # Use bf16 for GPT-OSS bf16: bool = True # DDP configuration ddp_backend: str = "nccl" ddp_find_unused_parameters: bool = False # Logging and saving save_steps: int = 500 eval_steps: int = 100 logging_steps: int = 10 save_total_limit: Optional[int] = 3 # Evaluation eval_strategy: str = "steps" metric_for_best_model: str = "eval_loss" greater_is_better: bool = False load_best_model_at_end: bool = True eval_accumulation_steps: Optional[int] = None eval_ratio: float = 0.01 test_ratio: float = 0.01 # Data configuration dataset_name: str = "HuggingFaceH4/Multilingual-Thinking" dataset_split: str = "train" input_field: str = "messages" # GPT-OSS uses messages format target_field: str = None # Not used for messages format filter_bad_entries: bool = False bad_entry_field: str = "bad_entry" # Chat template configuration - GPT-OSS specific use_chat_template: bool = True chat_template_kwargs: dict = None # Trackio monitoring configuration enable_tracking: bool = True trackio_url: Optional[str] = None trackio_token: Optional[str] = None log_artifacts: bool = True log_metrics: bool = True log_config: bool = True experiment_name: Optional[str] = None # HF Datasets configuration hf_token: Optional[str] = None dataset_repo: Optional[str] = None # GPT-OSS specific configurations # LoRA configuration for GPT-OSS use_lora: bool = True lora_config: dict = None # Quantization for GPT-OSS (MXFP4) use_quantization: bool = True quantization_config: dict = None # GPT-OSS specific model kwargs model_kwargs: dict = None # Performance and precision extras dataloader_prefetch_factor: int = 2 tf32: Optional[bool] = None # DPO preference training fields chosen_field: Optional[str] = None rejected_field: Optional[str] = None dpo_beta: float = 0.1 def __post_init__(self): if self.chat_template_kwargs is None: self.chat_template_kwargs = { "add_generation_prompt": True, "tokenize": False # GPT-OSS specific } if self.lr_scheduler_kwargs is None: self.lr_scheduler_kwargs = { "min_lr_rate": 0.1 } if self.lora_config is None: self.lora_config = { "r": 8, "lora_alpha": 16, "target_modules": "all-linear", "target_parameters": [ "7.mlp.experts.gate_up_proj", "7.mlp.experts.down_proj", "15.mlp.experts.gate_up_proj", "15.mlp.experts.down_proj", "23.mlp.experts.gate_up_proj", "23.mlp.experts.down_proj", ] } if self.quantization_config is None: self.quantization_config = { "dequantize": True } if self.model_kwargs is None: self.model_kwargs = { "attn_implementation": "eager", "torch_dtype": "auto", "use_cache": False, "device_map": "auto" } # Validate configuration if self.fp16 and self.bf16: raise ValueError("Cannot use both fp16 and bf16") if self.max_seq_length > 131072: # 128k limit raise ValueError("max_seq_length cannot exceed 131072") # Set default experiment name if not provided if self.experiment_name is None: self.experiment_name = "gpt_oss_basic" def get_config(config_path: str) -> GPTOSSBasicConfig: """Load configuration from file or return default""" if os.path.exists(config_path): # Load from file if it exists import importlib.util spec = importlib.util.spec_from_file_location("config_module", config_path) config_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(config_module) if hasattr(config_module, 'config'): return config_module.config else: # Try to find a config class for attr_name in dir(config_module): attr = getattr(config_module, attr_name) if isinstance(attr, GPTOSSBasicConfig): return attr # Return default configuration return GPTOSSBasicConfig() # Default configuration instance config = GPTOSSBasicConfig()