""" Trackio Monitoring Integration for SmolLM3 Fine-tuning Provides comprehensive experiment tracking and monitoring capabilities with HF Datasets support """ import os import json import logging from typing import Dict, Any, Optional, List from datetime import datetime import torch from pathlib import Path # Import the real API client try: from scripts.trackio_tonic.trackio_api_client import TrackioAPIClient TRACKIO_AVAILABLE = True except ImportError: TrackioAPIClient = None TRACKIO_AVAILABLE = False print("Warning: Trackio API client not available. Install with: pip install requests") # Check if there's a conflicting trackio package installed try: import trackio print(f"Warning: Found installed trackio package at {trackio.__file__}") print("This may conflict with our custom TrackioAPIClient. Using custom implementation only.") except ImportError: pass # No conflicting package found logger = logging.getLogger(__name__) class SmolLM3Monitor: """Monitoring and tracking for SmolLM3 fine-tuning experiments with HF Datasets support Monitoring modes: - "both": Log to Trackio Space and HF Datasets (plus local JSON files) - "dataset": Log only to HF Datasets (plus local JSON files). Trackio Space is not written to - "trackio": Log only to Trackio Space (plus local JSON files). HF Datasets writes are disabled - "none": Local-only logging; no remote writes """ def __init__( self, experiment_name: str, trackio_url: Optional[str] = None, trackio_token: Optional[str] = None, enable_tracking: bool = True, log_artifacts: bool = True, log_metrics: bool = True, log_config: bool = True, hf_token: Optional[str] = None, dataset_repo: Optional[str] = None, monitoring_mode: Optional[str] = None, ): self.experiment_name = experiment_name # Determine monitoring mode (env override supported) mode_env = os.environ.get('MONITORING_MODE') selected_mode = (monitoring_mode or mode_env or 'both').strip().lower() if selected_mode not in ('both', 'dataset', 'trackio', 'none'): selected_mode = 'both' self.monitoring_mode = selected_mode # Track which backends are active self.use_trackio = (selected_mode in ('both', 'trackio')) and enable_tracking and TRACKIO_AVAILABLE # HF dataset only if mode requires it and token is available (repo validated later) self.hf_token = hf_token or os.environ.get('HF_TOKEN') self.use_dataset = (selected_mode in ('both', 'dataset')) and bool(self.hf_token) # For TRL compatibility, "enable_tracking" reflects Trackio availability self.enable_tracking = self.use_trackio self.log_artifacts = log_artifacts self.log_metrics_enabled = log_metrics # Rename to avoid conflict self.log_config_enabled = log_config # Rename to avoid conflict # Flush interval for dataset persistence (metrics) try: self.flush_interval = int(os.environ.get('TRACKIO_FLUSH_INTERVAL', '10')) except Exception: self.flush_interval = 10 # HF Datasets configuration self.dataset_repo = dataset_repo or os.environ.get('TRACKIO_DATASET_REPO', 'tonic/trackio-experiments') # Ensure dataset repository is properly set if not self.dataset_repo or self.dataset_repo.strip() == '': logger.warning("⚠️ Dataset repository not set, using default") self.dataset_repo = 'tonic/trackio-experiments' # Initialize experiment metadata first self.experiment_id = None self.start_time = datetime.now() self.metrics_history = [] self.artifacts = [] # Initialize Trackio API client self.trackio_client = None if self.use_trackio: self._setup_trackio(trackio_url, trackio_token) # Initialize HF Datasets client self.hf_dataset_client = None self.dataset_manager = None if self.use_dataset: self._setup_hf_datasets() logger.info("Initialized monitoring for experiment: %s", experiment_name) logger.info("Dataset repository: %s", self.dataset_repo) # Create experiment in Trackio if tracking is enabled if self.use_trackio and self.trackio_client: self._create_experiment() def _setup_hf_datasets(self): """Setup HF Datasets client for persistent storage""" try: from datasets import Dataset from huggingface_hub import HfApi try: from .dataset_utils import create_dataset_manager except ImportError: # Try importing from same directory import sys import os sys.path.insert(0, os.path.dirname(__file__)) from dataset_utils import create_dataset_manager self.hf_dataset_client = { 'Dataset': Dataset, 'HfApi': HfApi, 'api': HfApi(token=self.hf_token) } # Initialize dataset manager for safe operations self.dataset_manager = create_dataset_manager(self.dataset_repo, self.hf_token) logger.info("✅ HF Datasets client and manager initialized for %s", self.dataset_repo) except ImportError: logger.warning("⚠️ datasets or huggingface-hub not available. Install with: pip install datasets huggingface-hub") self.hf_dataset_client = None self.dataset_manager = None except Exception as e: logger.error("Failed to initialize HF Datasets client: %s", e) self.hf_dataset_client = None self.dataset_manager = None def _setup_trackio(self, trackio_url: Optional[str], trackio_token: Optional[str]): """Setup Trackio API client""" try: # Get Trackio configuration from environment or parameters # Accept either a full URL or an org/space identifier # Prefer explicit parameter, then environment variables space_id = ( trackio_url or os.getenv('TRACKIO_URL') or os.getenv('TRACKIO_SPACE_ID') ) if not space_id: logger.warning("No Trackio Space configured via param or env (TRACKIO_URL/TRACKIO_SPACE_ID). Disabling Trackio tracking.") self.enable_tracking = False self.use_trackio = False return # Get HF token for Space resolution hf_token = self.hf_token or trackio_token or os.getenv('HF_TOKEN') self.trackio_client = TrackioAPIClient(space_id, hf_token) # Test connection to Trackio Space try: # Test connection first connection_test = self.trackio_client.test_connection() if connection_test.get('error'): logger.warning(f"Trackio Space not accessible: {connection_test['error']}") logger.info("Continuing with HF Datasets only") self.enable_tracking = False self.use_trackio = False return logger.info("✅ Trackio Space connection successful") except Exception as e: logger.warning(f"Trackio Space not accessible: {e}") logger.info("Continuing with HF Datasets only") self.enable_tracking = False self.use_trackio = False return except Exception as e: logger.error(f"Failed to setup Trackio: {e}") self.enable_tracking = False self.use_trackio = False def _create_experiment(self): """Create experiment in Trackio and set experiment_id""" try: if not self.trackio_client: logger.warning("Trackio client not available, skipping experiment creation") return # Create experiment with timestamp to ensure uniqueness timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') experiment_name = f"{self.experiment_name}_{timestamp}" result = self.trackio_client.create_experiment( name=experiment_name, description=f"SmolLM3 fine-tuning experiment: {self.experiment_name}" ) if result.get('success'): # Extract experiment ID from the response response_data = result.get('data', '') if 'ID: ' in response_data: # Extract ID from response like "✅ Experiment created successfully!\nID: exp_20250727_151252\nName: test_experiment_api_fix\nStatus: running" lines = response_data.split('\n') for line in lines: if line.startswith('ID: '): self.experiment_id = line.replace('ID: ', '').strip() break if not self.experiment_id: # Fallback: generate experiment ID self.experiment_id = f"exp_{timestamp}" logger.info(f"✅ Experiment created successfully: {self.experiment_id}") else: logger.warning(f"Failed to create experiment: {result}") # Fallback: generate experiment ID timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') self.experiment_id = f"exp_{timestamp}" except Exception as e: logger.error(f"Failed to create experiment: {e}") # Fallback: generate experiment ID timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') self.experiment_id = f"exp_{timestamp}" def _save_to_hf_dataset(self, experiment_data: Dict[str, Any]): """Save experiment data to HF Dataset with data preservation using dataset manager. Non-destructive rules: - Merge with existing experiment by experiment_id - Metrics: append with de-dup (by step+timestamp), preserve nested format {timestamp, step, metrics} - Parameters: dict-merge (incoming overrides keys) - Artifacts/logs: union with de-dup, preserve order - Top-level scalar fields (e.g., status, name, description, created_at) update only when provided """ # Respect monitoring mode if not self.use_dataset: logger.debug("Dataset persistence disabled by monitoring_mode=%s", self.monitoring_mode) return False if not self.dataset_manager: logger.warning("⚠️ Dataset manager not available") return False try: experiment_id = self.experiment_id or f"exp_{datetime.now().strftime('%Y%m%d_%H%M%S')}" # Load existing experiment (if any) existing = self.dataset_manager.get_experiment_by_id(experiment_id) or {} # Helper to safely parse JSON fields from existing def _parse_json_field(value, default): try: if value is None: return default if isinstance(value, str): return json.loads(value) if value else default return value except Exception: return default existing_metrics = _parse_json_field(existing.get('metrics'), []) existing_parameters = _parse_json_field(existing.get('parameters'), {}) existing_artifacts = _parse_json_field(existing.get('artifacts'), []) existing_logs = _parse_json_field(existing.get('logs'), []) # Start from existing fields merged_metrics = list(existing_metrics) if isinstance(existing_metrics, list) else [] merged_parameters = dict(existing_parameters) if isinstance(existing_parameters, dict) else {} merged_artifacts = list(existing_artifacts) if isinstance(existing_artifacts, list) else [] # Merge incoming data if 'metrics' in experiment_data: # Accept either a list of metric dicts or a single metrics dict incoming_metrics = experiment_data.get('metrics') # Build a set of (step, timestamp) to deduplicate def _entry_key(entry: Dict[str, Any]): return (entry.get('step'), entry.get('timestamp')) existing_keys = set() for entry in merged_metrics: # Support both nested and flat formats in existing data if isinstance(entry, dict) and 'metrics' in entry: existing_keys.add(_entry_key(entry)) elif isinstance(entry, dict): existing_keys.add((entry.get('step'), entry.get('timestamp'))) def _to_nested_entry(metric: Dict[str, Any]) -> Dict[str, Any]: # If already nested, return as-is if isinstance(metric, dict) and 'metrics' in metric: return metric # Convert flat dict into nested format expected by the Space step_val = metric.get('step') ts_val = metric.get('timestamp') metrics_only = {k: v for k, v in metric.items() if k not in ('step', 'timestamp')} return { 'timestamp': ts_val, 'step': step_val, 'metrics': metrics_only } if isinstance(incoming_metrics, list): for m in incoming_metrics: nested = _to_nested_entry(m if isinstance(m, dict) else {}) if _entry_key(nested) not in existing_keys: merged_metrics.append(nested) existing_keys.add(_entry_key(nested)) elif isinstance(incoming_metrics, dict): nested = _to_nested_entry(incoming_metrics) if _entry_key(nested) not in existing_keys: merged_metrics.append(nested) # else: ignore invalid metrics payload else: # Treat as parameters and/or top-level updates try: if isinstance(experiment_data, dict): # Extract known top-level fields (do not bury into parameters) top_level_updates = {} for k in ['status', 'name', 'description', 'created_at', 'experiment_end_time', 'final_metrics_count', 'total_artifacts']: if k in experiment_data: top_level_updates[k] = experiment_data[k] # Remove them from parameters payload param_updates = {k: v for k, v in experiment_data.items() if k not in top_level_updates} # Apply param updates merged_parameters.update(param_updates) # Apply top-level updates to `existing` so they are reflected in the final record below for k, v in top_level_updates.items(): existing[k] = v except Exception: pass # Collapse duplicate step entries by merging their metric dictionaries try: def _collapse_by_step(entries: list) -> list: step_to_entry: dict = {} for e in entries: if not isinstance(e, dict): continue # Normalize to nested structure if 'metrics' not in e: e = { 'timestamp': e.get('timestamp'), 'step': e.get('step'), 'metrics': {k: v for k, v in e.items() if k not in ('step', 'timestamp')} } step_val = e.get('step') if step_val in step_to_entry: # Merge metrics into existing entry for the same step existing_e = step_to_entry[step_val] try: existing_e_metrics = existing_e.get('metrics', {}) if isinstance(existing_e_metrics, dict): existing_e_metrics.update(e.get('metrics', {})) else: existing_e['metrics'] = e.get('metrics', {}) except Exception: existing_e['metrics'] = e.get('metrics', {}) # Prefer the latest timestamp (ISO strings compare lexicographically) try: if str(e.get('timestamp', '')) > str(existing_e.get('timestamp', '')): existing_e['timestamp'] = e.get('timestamp') except Exception: pass else: step_to_entry[step_val] = dict(e) # Sort by step (fallback to 0 for None/non-numeric) def _step_key(x): val = x.get('step') try: return float(val) except Exception: return -1.0 return sorted(step_to_entry.values(), key=_step_key) merged_metrics = _collapse_by_step(merged_metrics) except Exception: # If anything goes wrong, keep original list pass # Merge artifacts if provided if 'artifacts' in experiment_data and isinstance(experiment_data['artifacts'], list): # De-duplicate while preserving order seen = set(merged_artifacts) for a in experiment_data['artifacts']: if a not in seen: merged_artifacts.append(a) seen.add(a) # Build the experiment payload to upsert current_experiment = { 'experiment_id': experiment_id, 'name': existing.get('name') or self.experiment_name, 'description': existing.get('description') or "SmolLM3 fine-tuning experiment", 'created_at': existing.get('created_at') or self.start_time.isoformat(), 'status': existing.get('status') or 'running', 'metrics': json.dumps(merged_metrics, default=str), 'parameters': json.dumps(merged_parameters, default=str), 'artifacts': json.dumps(merged_artifacts, default=str), 'logs': json.dumps(existing_logs, default=str), 'last_updated': datetime.now().isoformat() } success = self.dataset_manager.upsert_experiment(current_experiment) if success: logger.info(f"✅ Experiment data saved to HF Dataset: {self.dataset_repo}") return True else: logger.error("❌ Failed to save experiment data to HF Dataset") return False except Exception as e: logger.error(f"❌ Failed to save to HF Dataset: {e}") return False def log_configuration(self, config: Dict[str, Any]): """Log experiment configuration (always attempts dataset persistence)""" if not self.log_config_enabled: return try: # Log configuration as parameters if self.use_trackio and self.trackio_client: try: result = self.trackio_client.log_parameters( experiment_id=self.experiment_id, parameters=config ) if "success" in result: logger.info("Configuration logged to Trackio") else: logger.warning("Failed to log configuration to Trackio: %s", result) except Exception as e: logger.warning("Trackio configuration logging failed: %s", e) # Save to HF Dataset if self.use_dataset: self._save_to_hf_dataset(config) # Also save config locally config_path = "config_{}_{}.json".format( self.experiment_name, self.start_time.strftime('%Y%m%d_%H%M%S') ) with open(config_path, 'w') as f: json.dump(config, f, indent=2, default=str) self.artifacts.append(config_path) logger.info("Configuration saved to %s", config_path) except Exception as e: logger.error("Failed to log configuration: %s", e) def log_config(self, config: Dict[str, Any]): """Alias for log_configuration for backward compatibility""" return self.log_configuration(config) def log_metrics(self, metrics: Dict[str, Any], step: Optional[int] = None): """ Log training metrics. Supports advanced metrics such as: - total_tokens, truncated_tokens, padding_tokens - throughput, step_time, batch_size, seq_len - token_acc, train/gate_ortho, train/center, etc. """ if not self.log_metrics_enabled: return try: # Add timestamp metrics['timestamp'] = datetime.now().isoformat() # If caller didn't provide step, try to infer it from common keys emitted by HF/TRL if step is None: try: for step_key in ( 'global_step', 'train/global_step', 'step', 'train/step', ): if step_key in metrics and metrics[step_key] is not None: step = int(metrics[step_key]) break except Exception: step = step # keep None if parsing fails if step is not None: metrics['step'] = step # Log to Trackio (if available) if self.use_trackio and self.trackio_client: try: result = self.trackio_client.log_metrics( experiment_id=self.experiment_id, metrics=metrics, step=step ) if "success" in result: logger.debug("Metrics logged to Trackio") else: logger.warning("Failed to log metrics to Trackio: %s", result) except Exception as e: logger.warning("Trackio logging failed: %s", e) # Store locally self.metrics_history.append(metrics) # Save to HF Dataset periodically (configurable) if self.use_dataset: flush_every = max(1, int(getattr(self, 'flush_interval', 10))) # Only append the delta since last flush to minimize risk try: if not hasattr(self, '_last_flushed_index'): self._last_flushed_index = 0 if len(self.metrics_history) - self._last_flushed_index >= flush_every: new_slice = self.metrics_history[self._last_flushed_index:] # Persist only the tail slice; merge code will union-append self._save_to_hf_dataset({'metrics': new_slice}) self._last_flushed_index = len(self.metrics_history) except Exception: pass logger.debug("Metrics logged: %s", metrics) except Exception as e: logger.error("Failed to log metrics: %s", e) def log_model_checkpoint(self, checkpoint_path: str, step: Optional[int] = None): """Log model checkpoint""" if not self.log_artifacts: return try: # For now, just log the checkpoint path as a parameter # The actual file upload would need additional API endpoints checkpoint_info = { "checkpoint_path": checkpoint_path, "checkpoint_step": step, "checkpoint_size": os.path.getsize(checkpoint_path) if os.path.exists(checkpoint_path) else 0 } if self.use_trackio and self.trackio_client: result = self.trackio_client.log_parameters( experiment_id=self.experiment_id, parameters=checkpoint_info ) if "success" in result: logger.info("Checkpoint logged to Trackio") else: logger.error("Failed to log checkpoint to Trackio: %s", result) self.artifacts.append(checkpoint_path) # Also preserve checkpoint info in HF dataset if self.use_dataset: try: self._save_to_hf_dataset({'artifacts': [checkpoint_path], **checkpoint_info}) except Exception: pass logger.info("Checkpoint logged: %s", checkpoint_path) except Exception as e: logger.error("Failed to log checkpoint: %s", e) def log_evaluation_results(self, results: Dict[str, Any], step: Optional[int] = None): """Log evaluation results""" try: # Add evaluation prefix to metrics eval_metrics = {f"eval_{k}": v for k, v in results.items()} self.log_metrics(eval_metrics, step) # Save evaluation results locally eval_path = "eval_results_step_{}_{}.json".format( step or "unknown", self.start_time.strftime('%Y%m%d_%H%M%S') ) with open(eval_path, 'w') as f: json.dump(results, f, indent=2, default=str) self.artifacts.append(eval_path) logger.info("Evaluation results logged and saved to %s", eval_path) except Exception as e: logger.error("Failed to log evaluation results: %s", e) def log_system_metrics(self, step: Optional[int] = None): """Log system metrics (GPU, memory, etc.)""" try: system_metrics = {} # GPU metrics if torch.cuda.is_available(): for i in range(torch.cuda.device_count()): system_metrics['gpu_{}_memory_allocated'.format(i)] = torch.cuda.memory_allocated(i) / 1024**3 # GB system_metrics['gpu_{}_memory_reserved'.format(i)] = torch.cuda.memory_reserved(i) / 1024**3 # GB system_metrics['gpu_{}_utilization'.format(i)] = torch.cuda.utilization(i) if hasattr(torch.cuda, 'utilization') else 0 # CPU and memory metrics (basic) try: import psutil system_metrics['cpu_percent'] = psutil.cpu_percent() system_metrics['memory_percent'] = psutil.virtual_memory().percent except ImportError: logger.warning("psutil not available, skipping CPU/memory metrics") self.log_metrics(system_metrics, step) except Exception as e: logger.error("Failed to log system metrics: %s", e) def log_training_summary(self, summary: Dict[str, Any]): """Log training summary at the end""" try: # Add experiment duration end_time = datetime.now() duration = (end_time - self.start_time).total_seconds() summary['experiment_duration_seconds'] = duration summary['experiment_duration_hours'] = duration / 3600 # Log final summary to Trackio if self.use_trackio and self.trackio_client: result = self.trackio_client.log_parameters( experiment_id=self.experiment_id, parameters=summary ) if "success" in result: logger.info("Training summary logged to Trackio") else: logger.error("Failed to log training summary to Trackio: %s", result) # Save to HF Dataset if self.use_dataset: self._save_to_hf_dataset(summary) # Save summary locally summary_path = "training_summary_{}_{}.json".format( self.experiment_name, self.start_time.strftime('%Y%m%d_%H%M%S') ) with open(summary_path, 'w') as f: json.dump(summary, f, indent=2, default=str) self.artifacts.append(summary_path) logger.info("Training summary logged and saved to %s", summary_path) except Exception as e: logger.error("Failed to log training summary: %s", e) def create_monitoring_callback(self): """Create a callback for integration with Hugging Face Trainer""" from transformers import TrainerCallback class TrackioCallback(TrainerCallback): """ Trainer callback for logging metrics, including advanced metrics: - total_tokens, truncated_tokens, padding_tokens - throughput, step_time, batch_size, seq_len - token_acc, train/gate_ortho, train/center, etc. """ def __init__(self, monitor): super().__init__() self.monitor = monitor logger.info("TrackioCallback initialized") self.last_step_time = None def on_init_end(self, args, state, control, **kwargs): """Called when training initialization is complete""" try: logger.info("Training initialization completed") except Exception as e: logger.error("Error in on_init_end: %s", e) def on_log(self, args, state, control, logs=None, **kwargs): """Called when logs are created""" import time try: step = getattr(state, 'global_step', None) # Timing and throughput now = time.time() if self.last_step_time is not None: step_time = now - self.last_step_time logs['step_time'] = step_time # Throughput: tokens/sec if total_tokens is available if hasattr(self, 'last_total_tokens') and self.last_total_tokens is not None: throughput = (logs.get('total_tokens', 0) / step_time) if step_time > 0 else 0 logs['throughput'] = throughput self.last_step_time = now # Token stats from batch (if available in kwargs) batch = kwargs.get('inputs', None) if batch is not None: for key in ['total_tokens', 'padding_tokens', 'truncated_tokens', 'batch_size', 'seq_len']: if key in batch: logs[key] = batch[key] self.last_total_tokens = batch.get('total_tokens', None) else: self.last_total_tokens = None # Token accuracy (if possible) if 'labels' in logs and 'predictions' in logs: labels = logs['labels'] preds = logs['predictions'] if hasattr(labels, 'shape') and hasattr(preds, 'shape'): correct = (preds == labels).sum().item() total = labels.numel() logs['token_acc'] = correct / total if total > 0 else 0.0 self.monitor.log_metrics(logs, step) self.monitor.log_system_metrics(step) except Exception as e: logger.error("Error in on_log: %s", e) def on_save(self, args, state, control, **kwargs): """Called when a checkpoint is saved""" try: step = getattr(state, 'global_step', None) if step is not None: checkpoint_path = os.path.join(args.output_dir, "checkpoint-{}".format(step)) if os.path.exists(checkpoint_path): self.monitor.log_model_checkpoint(checkpoint_path, step) except Exception as e: logger.error("Error in on_save: %s", e) def on_evaluate(self, args, state, control, metrics=None, **kwargs): """Called when evaluation is performed""" try: if metrics and isinstance(metrics, dict): step = getattr(state, 'global_step', None) self.monitor.log_evaluation_results(metrics, step) except Exception as e: logger.error("Error in on_evaluate: %s", e) def on_train_begin(self, args, state, control, **kwargs): """Called when training begins""" try: logger.info("Training started") except Exception as e: logger.error("Error in on_train_begin: %s", e) def on_train_end(self, args, state, control, **kwargs): """Called when training ends""" try: logger.info("Training completed") if self.monitor: self.monitor.close() except Exception as e: logger.error("Error in on_train_end: %s", e) callback = TrackioCallback(self) logger.info("TrackioCallback created successfully") return callback def get_experiment_url(self) -> Optional[str]: """Get the URL to view the experiment in Trackio""" if self.use_trackio and self.trackio_client and self.experiment_id: return "{}?tab=view_experiments".format(self.trackio_client.space_url) return None def close(self, final_status: str = "completed"): """ Close the monitoring session with final status update Args: final_status (str): Final status for the experiment (completed, failed, etc.) """ logger.info(f"🔚 Closing monitoring session with status: {final_status}") if self.use_trackio and self.trackio_client: try: # Mark experiment as completed in Trackio result = self.trackio_client.update_experiment_status( experiment_id=self.experiment_id, status=final_status ) if "success" in result: logger.info("✅ Trackio monitoring session closed") else: logger.error("❌ Failed to close Trackio monitoring session: %s", result) except Exception as e: logger.error("❌ Failed to close Trackio monitoring session: %s", e) # Final save to HF Dataset with proper status update if self.use_dataset and self.dataset_manager: try: # Update experiment with final status without clobbering metrics final_experiment_data = { 'status': final_status, 'experiment_end_time': datetime.now().isoformat(), 'final_metrics_count': len(self.metrics_history), 'total_artifacts': len(self.artifacts) } self._save_to_hf_dataset(final_experiment_data) # Also persist any unflushed metrics tail try: last_idx = getattr(self, '_last_flushed_index', 0) if len(self.metrics_history) > last_idx: tail = self.metrics_history[last_idx:] self._save_to_hf_dataset({'metrics': tail}) self._last_flushed_index = len(self.metrics_history) except Exception: pass except Exception as e: logger.error(f"❌ Failed to save final experiment data: {e}") logger.info(f"🎯 Monitoring session closed for experiment: {self.experiment_id}") # Utility function to create monitor from config def create_monitor_from_config(config, experiment_name: Optional[str] = None) -> SmolLM3Monitor: """Create a monitor instance from configuration""" if experiment_name is None: experiment_name = getattr(config, 'experiment_name', 'smollm3_experiment') return SmolLM3Monitor( experiment_name=experiment_name, trackio_url=getattr(config, 'trackio_url', None), trackio_token=getattr(config, 'trackio_token', None), enable_tracking=getattr(config, 'enable_tracking', True), log_artifacts=getattr(config, 'log_artifacts', True), log_metrics=getattr(config, 'log_metrics', True), log_config=getattr(config, 'log_config', True), hf_token=getattr(config, 'hf_token', None), dataset_repo=getattr(config, 'dataset_repo', None), monitoring_mode=getattr(config, 'monitoring_mode', os.environ.get('MONITORING_MODE', 'both')) )