#!/usr/bin/env python3 """ Dataset utilities for Trackio experiment data management Provides functions for safe dataset operations with data preservation """ import json import logging from datetime import datetime from typing import Dict, Any, List, Optional, Union from datasets import Dataset, load_dataset logger = logging.getLogger(__name__) class TrackioDatasetManager: """ Manager class for Trackio experiment datasets with data preservation. This class ensures that existing experiment data is always preserved when adding new experiments or updating existing ones. """ def __init__(self, dataset_repo: str, hf_token: str): """ Initialize the dataset manager. Args: dataset_repo (str): HF dataset repository ID (e.g., "username/dataset-name") hf_token (str): Hugging Face token for authentication """ self.dataset_repo = dataset_repo self.hf_token = hf_token self._validate_repo_format() def _validate_repo_format(self): """Validate dataset repository format""" if not self.dataset_repo or '/' not in self.dataset_repo: raise ValueError(f"Invalid dataset repository format: {self.dataset_repo}") def check_dataset_exists(self) -> bool: """ Check if the dataset repository exists and is accessible. Returns: bool: True if dataset exists and is accessible, False otherwise """ try: # Try standard load first load_dataset(self.dataset_repo, token=self.hf_token) logger.info(f"✅ Dataset {self.dataset_repo} exists and is accessible") return True except Exception as e: # Some hubs raise a split-metadata mismatch; retry with relaxed verification try: logger.info(f"📊 Standard load failed: {e}. Retrying with relaxed verification...") load_dataset( self.dataset_repo, token=self.hf_token, verification_mode="no_checks" # type: ignore[arg-type] ) logger.info(f"✅ Dataset {self.dataset_repo} accessible with relaxed verification") return True except Exception as e2: logger.info(f"📊 Dataset {self.dataset_repo} doesn't exist or isn't accessible: {e2}") return False def load_existing_experiments(self) -> List[Dict[str, Any]]: """ Load all existing experiments from the dataset. Returns: List[Dict[str, Any]]: List of existing experiment dictionaries """ try: if not self.check_dataset_exists(): logger.info("📊 No existing dataset found, returning empty list") return [] # Load with relaxed verification to avoid split-metadata mismatches blocking reads try: dataset = load_dataset(self.dataset_repo, token=self.hf_token) except Exception: dataset = load_dataset(self.dataset_repo, token=self.hf_token, verification_mode="no_checks") # type: ignore[arg-type] if 'train' not in dataset: logger.info("📊 No 'train' split found in dataset") return [] experiments = list(dataset['train']) logger.info(f"📊 Loaded {len(experiments)} existing experiments") # Validate experiment structure valid_experiments = [] for exp in experiments: if self._validate_experiment_structure(exp): valid_experiments.append(exp) else: logger.warning(f"⚠️ Skipping invalid experiment: {exp.get('experiment_id', 'unknown')}") logger.info(f"📊 {len(valid_experiments)} valid experiments loaded") return valid_experiments except Exception as e: logger.error(f"❌ Failed to load existing experiments: {e}") return [] def _validate_experiment_structure(self, experiment: Dict[str, Any]) -> bool: """ Validate and SANITIZE an experiment structure. This function is intentionally lenient to avoid dropping any existing rows from the remote dataset during union-merge saves. Rules: - 'experiment_id' must exist; otherwise the row is skipped - All other required fields are auto-filled with safe defaults - JSON fields are normalized to valid JSON strings Args: experiment (Dict[str, Any]): Experiment dictionary to validate/sanitize Returns: bool: True if experiment has (or was sanitized to) a valid structure. """ # Hard requirement: experiment_id must be present if not experiment.get('experiment_id'): logger.warning("⚠️ Missing required field 'experiment_id' in experiment; skipping row") return False # Fill defaults for non-JSON scalar fields defaults = { 'name': '', 'description': '', 'created_at': datetime.now().isoformat(), 'status': 'running', } for key, default_value in defaults.items(): if experiment.get(key) in (None, ''): experiment[key] = default_value # Normalize JSON fields to valid JSON strings def _ensure_json_string(field_name: str, default_value: Any): raw_value = experiment.get(field_name) try: if isinstance(raw_value, str): # Validate JSON string; if empty use default if raw_value.strip() == '': experiment[field_name] = json.dumps(default_value, default=str) else: json.loads(raw_value) # keep as-is if it's valid JSON else: # Convert object to JSON string experiment[field_name] = json.dumps( raw_value if raw_value is not None else default_value, default=str ) except Exception: # On any error, fall back to default JSON experiment[field_name] = json.dumps(default_value, default=str) for json_field, default in (('metrics', []), ('parameters', {}), ('artifacts', []), ('logs', [])): _ensure_json_string(json_field, default) return True def save_experiments(self, experiments: List[Dict[str, Any]], commit_message: Optional[str] = None) -> bool: """ Save a list of experiments to the dataset using a non-destructive union merge. - Loads existing experiments (if any) and builds a union by `experiment_id`. - For overlapping IDs, merges JSON fields: - metrics: concatenates lists and de-duplicates by (step, timestamp) for nested entries - parameters: dict-update (new values override) - artifacts: union with de-dup - logs: concatenation with de-dup - Non-JSON scalar fields from incoming experiments take precedence. Args: experiments (List[Dict[str, Any]]): List of experiment dictionaries commit_message (Optional[str]): Custom commit message Returns: bool: True if save was successful, False otherwise """ try: if not experiments: logger.warning("⚠️ No experiments to save") return False # Helpers def _parse_json_field(value, default): try: if value is None: return default if isinstance(value, str): return json.loads(value) if value else default return value except Exception: return default def _metrics_key(entry: Dict[str, Any]): if isinstance(entry, dict): return (entry.get('step'), entry.get('timestamp')) return (None, json.dumps(entry, sort_keys=True)) # Load existing experiments for union merge existing = {} dataset_exists = self.check_dataset_exists() try: existing_list = self.load_existing_experiments() for row in existing_list: exp_id = row.get('experiment_id') if exp_id: existing[exp_id] = row except Exception: existing = {} # Safety guard: avoid destructive overwrite if dataset exists but # we failed to read any existing records (e.g., transient HF issue) if dataset_exists and len(existing) == 0 and len(experiments) <= 3: logger.error( "❌ Refusing to overwrite dataset: existing records could not be loaded " "but repository exists. Skipping save to prevent data loss." ) return False # Validate and merge merged_map: Dict[str, Dict[str, Any]] = {} # Seed with existing for exp_id, row in existing.items(): merged_map[exp_id] = row # Apply incoming for exp in experiments: if not self._validate_experiment_structure(exp): logger.error(f"❌ Invalid experiment structure: {exp.get('experiment_id', 'unknown')}") return False exp_id = exp['experiment_id'] incoming = exp if exp_id not in merged_map: incoming['last_updated'] = incoming.get('last_updated') or datetime.now().isoformat() merged_map[exp_id] = incoming continue # Merge with existing base = merged_map[exp_id] # Parse JSON fields base_metrics = _parse_json_field(base.get('metrics'), []) base_params = _parse_json_field(base.get('parameters'), {}) base_artifacts = _parse_json_field(base.get('artifacts'), []) base_logs = _parse_json_field(base.get('logs'), []) inc_metrics = _parse_json_field(incoming.get('metrics'), []) inc_params = _parse_json_field(incoming.get('parameters'), {}) inc_artifacts = _parse_json_field(incoming.get('artifacts'), []) inc_logs = _parse_json_field(incoming.get('logs'), []) # Merge metrics with de-dup (by step+timestamp) then collapse per step merged_metrics = [] seen = set() for entry in base_metrics + inc_metrics: try: key = _metrics_key(entry) except Exception: key = (None, None) if key not in seen: seen.add(key) merged_metrics.append(entry) # Collapse duplicate steps by merging their metric dicts and keeping the latest timestamp try: step_to_entry: Dict[Any, Dict[str, Any]] = {} for e in merged_metrics: if not isinstance(e, dict): continue # Ensure nested structure {timestamp, step, metrics} if 'metrics' not in e: e = { 'timestamp': e.get('timestamp'), 'step': e.get('step'), 'metrics': {k: v for k, v in e.items() if k not in ('step', 'timestamp')} } step_val = e.get('step') if step_val in step_to_entry: existing_e = step_to_entry[step_val] try: existing_metrics_dict = existing_e.get('metrics', {}) if isinstance(existing_metrics_dict, dict): existing_metrics_dict.update(e.get('metrics', {})) else: existing_e['metrics'] = e.get('metrics', {}) except Exception: existing_e['metrics'] = e.get('metrics', {}) try: if str(e.get('timestamp', '')) > str(existing_e.get('timestamp', '')): existing_e['timestamp'] = e.get('timestamp') except Exception: pass else: step_to_entry[step_val] = dict(e) def _step_key(x: Dict[str, Any]): try: return float(x.get('step')) except Exception: return -1.0 merged_metrics = sorted(step_to_entry.values(), key=_step_key) except Exception: # On any error, keep the de-duplicated list pass # Merge params merged_params = {} if isinstance(base_params, dict): merged_params.update(base_params) if isinstance(inc_params, dict): merged_params.update(inc_params) # Merge artifacts and logs with de-dup def _dedup_list(lst): out = [] seen_local = set() for item in lst: key = json.dumps(item, sort_keys=True, default=str) if not isinstance(item, str) else item if key not in seen_local: seen_local.add(key) out.append(item) return out merged_artifacts = _dedup_list(list(base_artifacts) + list(inc_artifacts)) merged_logs = _dedup_list(list(base_logs) + list(inc_logs)) # Rebuild merged record preferring incoming scalars merged_rec = dict(base) merged_rec.update({k: v for k, v in incoming.items() if k not in ('metrics', 'parameters', 'artifacts', 'logs')}) merged_rec['metrics'] = json.dumps(merged_metrics, default=str) merged_rec['parameters'] = json.dumps(merged_params, default=str) merged_rec['artifacts'] = json.dumps(merged_artifacts, default=str) merged_rec['logs'] = json.dumps(merged_logs, default=str) merged_rec['last_updated'] = datetime.now().isoformat() merged_map[exp_id] = merged_rec # Prepare final list valid_experiments = list(merged_map.values()) # Ensure all have mandatory fields encoded normalized = [] for rec in valid_experiments: # Normalize json fields to strings for f, default in (('metrics', []), ('parameters', {}), ('artifacts', []), ('logs', [])): val = rec.get(f) if not isinstance(val, str): rec[f] = json.dumps(val if val is not None else default, default=str) if 'last_updated' not in rec: rec['last_updated'] = datetime.now().isoformat() normalized.append(rec) dataset = Dataset.from_list(normalized) # Generate commit message if not provided if not commit_message: commit_message = f"Union-merge update with {len(normalized)} experiments ({datetime.now().isoformat()})" # Push to hub dataset.push_to_hub( self.dataset_repo, token=self.hf_token, private=True, commit_message=commit_message ) logger.info(f"✅ Successfully saved {len(normalized)} experiments (union-merged) to {self.dataset_repo}") return True except Exception as e: logger.error(f"❌ Failed to save experiments to dataset: {e}") return False def upsert_experiment(self, experiment: Dict[str, Any]) -> bool: """ Insert a new experiment or update an existing one, preserving all other data. Args: experiment (Dict[str, Any]): Experiment dictionary to upsert Returns: bool: True if operation was successful, False otherwise """ try: # Validate the experiment structure if not self._validate_experiment_structure(experiment): logger.error(f"❌ Invalid experiment structure for {experiment.get('experiment_id', 'unknown')}") return False # Load existing experiments existing_experiments = self.load_existing_experiments() # Find if experiment already exists experiment_id = experiment['experiment_id'] experiment_found = False updated_experiments = [] for existing_exp in existing_experiments: if existing_exp.get('experiment_id') == experiment_id: # Update existing experiment logger.info(f"🔄 Updating existing experiment: {experiment_id}") experiment['last_updated'] = datetime.now().isoformat() updated_experiments.append(experiment) experiment_found = True else: # Preserve existing experiment updated_experiments.append(existing_exp) # If experiment doesn't exist, add it if not experiment_found: logger.info(f"➕ Adding new experiment: {experiment_id}") experiment['last_updated'] = datetime.now().isoformat() updated_experiments.append(experiment) # Save all experiments commit_message = f"{'Update' if experiment_found else 'Add'} experiment {experiment_id} (preserving {len(existing_experiments)} existing experiments)" return self.save_experiments(updated_experiments, commit_message) except Exception as e: logger.error(f"❌ Failed to upsert experiment: {e}") return False def get_experiment_by_id(self, experiment_id: str) -> Optional[Dict[str, Any]]: """ Retrieve a specific experiment by its ID. Args: experiment_id (str): The experiment ID to search for Returns: Optional[Dict[str, Any]]: The experiment dictionary if found, None otherwise """ try: experiments = self.load_existing_experiments() for exp in experiments: if exp.get('experiment_id') == experiment_id: logger.info(f"✅ Found experiment: {experiment_id}") return exp logger.info(f"📊 Experiment not found: {experiment_id}") return None except Exception as e: logger.error(f"❌ Failed to get experiment {experiment_id}: {e}") return None def list_experiments(self, status_filter: Optional[str] = None) -> List[Dict[str, Any]]: """ List all experiments, optionally filtered by status. Args: status_filter (Optional[str]): Filter by experiment status (running, completed, failed, paused) Returns: List[Dict[str, Any]]: List of experiments matching the filter """ try: experiments = self.load_existing_experiments() if status_filter: filtered_experiments = [exp for exp in experiments if exp.get('status') == status_filter] logger.info(f"📊 Found {len(filtered_experiments)} experiments with status '{status_filter}'") return filtered_experiments logger.info(f"📊 Found {len(experiments)} total experiments") return experiments except Exception as e: logger.error(f"❌ Failed to list experiments: {e}") return [] def backup_dataset(self, backup_suffix: Optional[str] = None) -> str: """ Create a backup of the current dataset. Args: backup_suffix (Optional[str]): Optional suffix for backup repo name Returns: str: Backup repository name if successful, empty string otherwise """ try: if not backup_suffix: backup_suffix = datetime.now().strftime('%Y%m%d_%H%M%S') backup_repo = f"{self.dataset_repo}-backup-{backup_suffix}" # Load current experiments experiments = self.load_existing_experiments() if not experiments: logger.warning("⚠️ No experiments to backup") return "" # Create backup dataset manager backup_manager = TrackioDatasetManager(backup_repo, self.hf_token) # Save to backup success = backup_manager.save_experiments( experiments, f"Backup of {self.dataset_repo} created on {datetime.now().isoformat()}" ) if success: logger.info(f"✅ Backup created: {backup_repo}") return backup_repo else: logger.error("❌ Failed to create backup") return "" except Exception as e: logger.error(f"❌ Failed to create backup: {e}") return "" def create_dataset_manager(dataset_repo: str, hf_token: str) -> TrackioDatasetManager: """ Factory function to create a TrackioDatasetManager instance. Args: dataset_repo (str): HF dataset repository ID hf_token (str): Hugging Face token Returns: TrackioDatasetManager: Configured dataset manager instance """ return TrackioDatasetManager(dataset_repo, hf_token)