Spaces:
Running
on
Zero
Running
on
Zero
Jordan Legg
refactor: retrieve title and desc from markdown, improve UI for more responsive usage
bbed54b
import gradio as gr | |
import torch | |
from transformers import AutoModel, AutoTokenizer, AutoConfig | |
import os | |
import base64 | |
import spaces | |
import io | |
from PIL import Image | |
import numpy as np | |
import yaml | |
import markdown | |
from pathlib import Path | |
# Function to extract title and description from the markdown file | |
def extract_title_description(md_file_path): | |
with open(md_file_path, 'r') as f: | |
lines = f.readlines() | |
# Extract frontmatter (YAML) for title | |
frontmatter = [] | |
content_start = 0 | |
if lines[0].strip() == '---': | |
for idx, line in enumerate(lines[1:], 1): | |
if line.strip() == '---': | |
content_start = idx + 1 | |
break | |
frontmatter.append(line) | |
frontmatter_yaml = yaml.safe_load(''.join(frontmatter)) | |
title = frontmatter_yaml.get('title', 'Title Not Found') | |
# Extract content (description) | |
description_md = ''.join(lines[content_start:]) | |
description = markdown.markdown(description_md) | |
return title, description | |
# Path to the markdown file | |
md_file_path = 'content/index.md' | |
# Extract title and description from the markdown file | |
title, description = extract_title_description(md_file_path) | |
# Rest of the script continues as before | |
model_name = 'ucaslcl/GOT-OCR2_0' | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id) | |
model = model.eval().cuda() | |
model.config.pad_token_id = tokenizer.eos_token_id | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None, render=False): | |
if task == "Plain Text OCR": | |
res = model.chat(tokenizer, image, ocr_type='ocr') | |
elif task == "Format Text OCR": | |
res = model.chat(tokenizer, image, ocr_type='format') | |
elif task == "Fine-grained OCR (Box)": | |
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_box=ocr_box) | |
elif task == "Fine-grained OCR (Color)": | |
res = model.chat(tokenizer, image, ocr_type=ocr_type, ocr_color=ocr_color) | |
elif task == "Multi-crop OCR": | |
res = model.chat_crop(tokenizer, image_file=image) | |
elif task == "Render Formatted OCR": | |
res = model.chat(tokenizer, image, ocr_type='format', render=True, save_render_file='./demo.html') | |
with open('./demo.html', 'r') as f: | |
html_content = f.read() | |
return res, html_content | |
return res, None | |
def update_inputs(task): | |
if task == "Plain Text OCR" or task == "Format Text OCR" or task == "Multi-crop OCR": | |
return [gr.update(visible=False)] * 4 | |
elif task == "Fine-grained OCR (Box)": | |
return [ | |
gr.update(visible=True, choices=["ocr", "format"]), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
] | |
elif task == "Fine-grained OCR (Color)": | |
return [ | |
gr.update(visible=True, choices=["ocr", "format"]), | |
gr.update(visible=False), | |
gr.update(visible=True, choices=["red", "green", "blue"]), | |
gr.update(visible=False) | |
] | |
elif task == "Render Formatted OCR": | |
return [gr.update(visible=False)] * 3 + [gr.update(visible=True)] | |
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color): | |
res, html_content = process_image(image, task, ocr_type, ocr_box, ocr_color) | |
if html_content: | |
return res, html_content | |
return res, None | |
import gradio as gr | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
# Left Column: Description | |
with gr.Column(scale=1): | |
gr.Markdown(f"# {title}") | |
gr.Markdown(description) | |
# Right Column: App Inputs and Outputs | |
with gr.Column(scale=3): | |
image_input = gr.Image(type="filepath", label="Input Image") | |
task_dropdown = gr.Dropdown( | |
choices=[ | |
"Plain Text OCR", | |
"Format Text OCR", | |
"Fine-grained OCR (Box)", | |
"Fine-grained OCR (Color)", | |
"Multi-crop OCR", | |
"Render Formatted OCR" | |
], | |
label="Select Task", | |
value="Plain Text OCR" | |
) | |
ocr_type_dropdown = gr.Dropdown( | |
choices=["ocr", "format"], | |
label="OCR Type", | |
visible=False | |
) | |
ocr_box_input = gr.Textbox( | |
label="OCR Box (x1,y1,x2,y2)", | |
placeholder="e.g., 100,100,200,200", | |
visible=False | |
) | |
ocr_color_dropdown = gr.Dropdown( | |
choices=["red", "green", "blue"], | |
label="OCR Color", | |
visible=False | |
) | |
render_checkbox = gr.Checkbox( | |
label="Render Result", | |
visible=False | |
) | |
submit_button = gr.Button("Process") | |
# OCR Result below the Submit button | |
output_text = gr.Textbox(label="OCR Result") | |
output_html = gr.HTML(label="Rendered HTML Output") | |
# Update inputs dynamically based on task selection | |
task_dropdown.change( | |
update_inputs, | |
inputs=[task_dropdown], | |
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, render_checkbox] | |
) | |
# Process OCR on button click | |
submit_button.click( | |
ocr_demo, | |
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], | |
outputs=[output_text, output_html] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |