import torch import torch.nn as nn import gradio as gr from tsai_gpt.tokenizer import Tokenizer import lightning as L from lightning.fabric.loggers import CSVLogger from pathlib import Path from tsai_gpt.utils import num_parameters, load_checkpoint, get_default_supported_precision from tsai_gpt.model import GPT, Block, Config model_name = "pythia-160m" name = "redpajama" out_dir = Path("out") / name log_interval = 100 precision = get_default_supported_precision(False) logger = CSVLogger("out", name, flush_logs_every_n_steps=log_interval) fabric = L.Fabric(devices=1, strategy="auto", precision=precision, loggers=logger) config = Config.from_name(model_name) def _init_weights(module: nn.Module) -> None: """Meant to be used with `gpt.apply(gpt._init_weights)`.""" if isinstance(module, nn.Linear): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) with fabric.init_module(empty_init=True): model = GPT(config) model.apply(_init_weights) model.apply(_init_weights) checkpoint_path = Path("out/redpajama/iter-015000-ckpt.pth") load_checkpoint(fabric, model, checkpoint_path) #print(model.transformer.h[0].mlp.fc.weight) #fabric.print(f"Time to instantiate model: {time.perf_counter() - t0:.02f} seconds.") #fabric.print(f"Total parameters {num_parameters(model):,}") weight_decay = 1e-1 beta1 = 0.9 beta2 = 0.95 learning_rate = 6e-3 hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")} model = fabric.setup(model) optimizer = torch.optim.AdamW( model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas=(beta1, beta2), foreach=False ) # model_copy = model optimizer = fabric.setup_optimizers(optimizer) state = {"model": model, "optimizer": optimizer, "hparams": hparams, "iter_num": 0, "step_count": 0} resume = max(out_dir.glob("*.pth"), key=lambda p: int(p.name.split("-")[1])) if resume: fabric.print(f"Loading model from {resume}") fabric.load(resume, state) deviceType = 'cuda' if torch.cuda.is_available() else 'cpu' m = model.to(deviceType) tokenizer_gpt = Tokenizer(checkpoint_dir=Path("checkpoints\meta-llama\Llama-2-7b-chat-hf")) def inference(input_context, count): #print('--------------------input = ',input_context) encoded_text = tokenizer_gpt.encode(input_context) #print('--------------------encoded text = ',encoded_text) count = int(count) #print('--------------------count = ',count) reshaped_tensor = torch.unsqueeze(encoded_text, 0).to(deviceType) #print('--------------------reshaped_tensor = ',reshaped_tensor) out_text = tokenizer_gpt.decode(m.generate(reshaped_tensor, max_new_tokens=count)[0]) return out_text title = "TSAI S22 Assignment: GPT training on LLaMa dataset" description = "A simple Gradio interface that accepts a context and generates text " examples = [["Machine Learning","200"], ["Deep Learning","200"] ] demo = gr.Interface( inference, inputs = [gr.Textbox(placeholder="Enter starting characters"), gr.Textbox(placeholder="Enter number of characters you want to generate")], outputs = [gr.Textbox(label="Generated text")], title = title, description = description, examples = examples ) demo.launch()