import torch import torch.nn as nn from torch.nn import functional as F # hyperparameters batch_size = 32 # how many independent sequences will we process in parallel? block_size = 8 # what is the maximum context length for predictions? max_iters = 3000 eval_interval = 300 learning_rate = 1e-2 device = 'cuda' if torch.cuda.is_available() else 'cpu' eval_iters = 200 # ------------ torch.manual_seed(1337) # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt with open('input.txt', 'r', encoding='utf-8') as f: text = f.read() # here are all the unique characters that occur in this text chars = sorted(list(set(text))) vocab_size = len(chars) # create a mapping from characters to integers stoi = { ch:i for i,ch in enumerate(chars) } itos = { i:ch for i,ch in enumerate(chars) } encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string # Train and test splits data = torch.tensor(encode(text), dtype=torch.long) n = int(0.9*len(data)) # first 90% will be train, rest val train_data = data[:n] val_data = data[n:] # data loading def get_batch(split): # generate a small batch of data of inputs x and targets y data = train_data if split == 'train' else val_data ix = torch.randint(len(data) - block_size, (batch_size,)) x = torch.stack([data[i:i+block_size] for i in ix]) y = torch.stack([data[i+1:i+block_size+1] for i in ix]) x, y = x.to(device), y.to(device) return x, y @torch.no_grad() def estimate_loss(): out = {} model.eval() for split in ['train', 'val']: losses = torch.zeros(eval_iters) for k in range(eval_iters): X, Y = get_batch(split) logits, loss = model(X, Y) losses[k] = loss.item() out[split] = losses.mean() model.train() return out # super simple bigram model class BigramLanguageModel(nn.Module): def __init__(self, vocab_size): super().__init__() # each token directly reads off the logits for the next token from a lookup table self.token_embedding_table = nn.Embedding(vocab_size, vocab_size) def forward(self, idx, targets=None): # idx and targets are both (B,T) tensor of integers logits = self.token_embedding_table(idx) # (B,T,C) if targets is None: loss = None else: B, T, C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets) return logits, loss def generate(self, idx, max_new_tokens): # idx is (B, T) array of indices in the current context for _ in range(max_new_tokens): # get the predictions logits, loss = self(idx) # focus only on the last time step logits = logits[:, -1, :] # becomes (B, C) # apply softmax to get probabilities probs = F.softmax(logits, dim=-1) # (B, C) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) # append sampled index to the running sequence idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) return idx model = BigramLanguageModel(vocab_size) m = model.to(device) # create a PyTorch optimizer optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) for iter in range(max_iters): # every once in a while evaluate the loss on train and val sets if iter % eval_interval == 0: losses = estimate_loss() print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") # sample a batch of data xb, yb = get_batch('train') # evaluate the loss logits, loss = model(xb, yb) optimizer.zero_grad(set_to_none=True) loss.backward() optimizer.step() # generate from the model context = torch.zeros((1, 1), dtype=torch.long, device=device) print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))