from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr tokenizer = AutoTokenizer.from_pretrained("merve/chatgpt-prompts-bart-long") model = AutoModelForSeq2SeqLM.from_pretrained("merve/chatgpt-prompts-bart-long", from_tf=True) def generate(prompt): batch = tokenizer(prompt, return_tensors="pt") generated_ids = model.generate(batch["input_ids"], max_new_tokens=150) output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return output[0] input_component = gr.Textbox(label="Input a persona, e.g. photographer", value="photographer") output_component = gr.Textbox(label="Prompt") examples = [["photographer"], ["developer"]] # Beschreibung hier korrekt eingerückt description = "Wunsch Rolle eingeben und Enter klicken - Kaffee oder Tee holen und Einfach.Prompt kopieren und einsetzen [this dataset](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts). " gr.Interface( generate, inputs=input_component, outputs=output_component, examples=examples, title="👨🏻‍🎤 ChatGPT Prompt Generator 👨🏻‍🎤", description=description, theme="ParityError/Interstellar" # Hinzugefügtes Theme ).launch()