Commit
Β·
d64ffef
0
Parent(s):
first version
Browse files- .gitignore +10 -0
- .python-version +1 -0
- README.md +0 -0
- leaderboard.py +84 -0
- main.py +117 -0
- mock_evaluation_results.csv +449 -0
- pyproject.toml +12 -0
- rank_through_time.py +266 -0
- uv.lock +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python-generated files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[oc]
|
| 4 |
+
build/
|
| 5 |
+
dist/
|
| 6 |
+
wheels/
|
| 7 |
+
*.egg-info
|
| 8 |
+
|
| 9 |
+
# Virtual environments
|
| 10 |
+
.venv
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.12
|
README.md
ADDED
|
File without changes
|
leaderboard.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def compute_leaderboard(df: pd.DataFrame) -> pd.DataFrame:
|
| 5 |
+
"""Compute average rank per model for each metric.
|
| 6 |
+
|
| 7 |
+
Ranking procedure:
|
| 8 |
+
1. Rank models within each (metric, subdataset, frequency, cutoff) group.
|
| 9 |
+
2. Average ranks across cutoff dates for each (metric, subdataset, frequency, model).
|
| 10 |
+
3. Average across all (subdataset, frequency) combos for each (metric, model).
|
| 11 |
+
|
| 12 |
+
Returns a dataframe with columns: model, rank CRPS, rank MASE
|
| 13 |
+
"""
|
| 14 |
+
ranked = df.copy()
|
| 15 |
+
ranked["rank"] = ranked.groupby(
|
| 16 |
+
["metric", "subdataset", "frequency", "cutoff"]
|
| 17 |
+
)["value"].rank(method="min")
|
| 18 |
+
|
| 19 |
+
# Step 2: average ranks across cutoffs per (metric, subdataset, frequency, model)
|
| 20 |
+
per_subdataset = (
|
| 21 |
+
ranked.groupby(["metric", "subdataset", "frequency", "model"])["rank"]
|
| 22 |
+
.mean()
|
| 23 |
+
.reset_index()
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Print per-subdataset ranks for manual inspection
|
| 27 |
+
for metric in sorted(per_subdataset["metric"].unique()):
|
| 28 |
+
print(f"\n{'='*60}")
|
| 29 |
+
print(f"Metric: {metric}")
|
| 30 |
+
print(f"{'='*60}")
|
| 31 |
+
sub = per_subdataset[per_subdataset["metric"] == metric]
|
| 32 |
+
pivot = sub.pivot_table(
|
| 33 |
+
index=["subdataset", "frequency"], columns="model", values="rank"
|
| 34 |
+
)
|
| 35 |
+
print(pivot.to_string())
|
| 36 |
+
|
| 37 |
+
# Step 3: average across all (subdataset, frequency) combos
|
| 38 |
+
overall = (
|
| 39 |
+
per_subdataset.groupby(["metric", "model"])["rank"]
|
| 40 |
+
.mean()
|
| 41 |
+
.reset_index()
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Pivot so each metric becomes a column
|
| 45 |
+
leaderboard = overall.pivot(index="model", columns="metric", values="rank")
|
| 46 |
+
leaderboard = leaderboard.rename(
|
| 47 |
+
columns={m: f"rank {m.upper()}" for m in leaderboard.columns}
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
# Average metric values: mean across all (subdataset, frequency, cutoff) per (metric, model)
|
| 51 |
+
avg_values = (
|
| 52 |
+
df.groupby(["metric", "model"])["value"]
|
| 53 |
+
.mean()
|
| 54 |
+
.reset_index()
|
| 55 |
+
.pivot(index="model", columns="metric", values="value")
|
| 56 |
+
)
|
| 57 |
+
avg_values = avg_values.rename(
|
| 58 |
+
columns={m: f"avg {m.upper()}" for m in avg_values.columns}
|
| 59 |
+
)
|
| 60 |
+
leaderboard = leaderboard.join(avg_values)
|
| 61 |
+
|
| 62 |
+
# Re-rank by average of the two rank columns for ordering
|
| 63 |
+
rank_cols = [c for c in leaderboard.columns if c.startswith("rank ")]
|
| 64 |
+
leaderboard["avg_rank"] = leaderboard[rank_cols].mean(axis=1)
|
| 65 |
+
leaderboard = leaderboard.sort_values("avg_rank")
|
| 66 |
+
leaderboard = leaderboard.drop(columns="avg_rank").reset_index()
|
| 67 |
+
|
| 68 |
+
# Round for display
|
| 69 |
+
for col in leaderboard.columns:
|
| 70 |
+
if col.startswith("rank "):
|
| 71 |
+
leaderboard[col] = leaderboard[col].round(2)
|
| 72 |
+
elif col.startswith("avg "):
|
| 73 |
+
leaderboard[col] = leaderboard[col].round(4)
|
| 74 |
+
|
| 75 |
+
return leaderboard
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
df = pd.read_csv("mock_evaluation_results.csv")
|
| 80 |
+
lb = compute_leaderboard(df)
|
| 81 |
+
print(f"\n{'='*60}")
|
| 82 |
+
print("LEADERBOARD")
|
| 83 |
+
print(f"{'='*60}")
|
| 84 |
+
print(lb.to_string(index=False))
|
main.py
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib
|
| 3 |
+
matplotlib.use("Agg")
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
from leaderboard import compute_leaderboard
|
| 8 |
+
from rank_through_time import (
|
| 9 |
+
plot_rank_for_subdataset,
|
| 10 |
+
plot_value_for_subdataset,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
df = pd.read_csv("mock_evaluation_results.csv")
|
| 14 |
+
|
| 15 |
+
ALL_METRICS = sorted(df["metric"].unique().tolist())
|
| 16 |
+
ALL_SUBDATASETS = sorted(df["subdataset"].unique().tolist())
|
| 17 |
+
ALL_MODELS = sorted(df["model"].unique().tolist())
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def build_table(metric, subdataset, models):
|
| 21 |
+
sub = df[df["metric"] == metric]
|
| 22 |
+
if subdataset != "All":
|
| 23 |
+
sub = sub[sub["subdataset"] == subdataset]
|
| 24 |
+
if models:
|
| 25 |
+
sub = sub[sub["model"].isin(models)]
|
| 26 |
+
pivot = sub.pivot_table(
|
| 27 |
+
index=["subdataset", "cutoff"], columns="model", values="value"
|
| 28 |
+
)
|
| 29 |
+
pivot = pivot.sort_index()
|
| 30 |
+
pivot = pivot.reset_index()
|
| 31 |
+
return pivot
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def build_plots(metric, subdataset):
|
| 35 |
+
fig_rank = plot_rank_for_subdataset(df, metric, subdataset)
|
| 36 |
+
fig_value = plot_value_for_subdataset(df, metric, subdataset)
|
| 37 |
+
# Gradio expects the figure objects directly
|
| 38 |
+
ret = fig_rank, fig_value
|
| 39 |
+
return ret
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
with gr.Blocks(title="Impermanent Leaderboard") as app:
|
| 43 |
+
gr.Markdown("# Impermanent Leaderboard")
|
| 44 |
+
|
| 45 |
+
with gr.Tab("Leaderboard"):
|
| 46 |
+
leaderboard_table = gr.Dataframe(
|
| 47 |
+
value=compute_leaderboard(df),
|
| 48 |
+
label="Leaderboard",
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
with gr.Tab("All results"):
|
| 52 |
+
with gr.Row():
|
| 53 |
+
metric_dd = gr.Dropdown(
|
| 54 |
+
choices=ALL_METRICS,
|
| 55 |
+
value=ALL_METRICS[0],
|
| 56 |
+
label="Metric",
|
| 57 |
+
)
|
| 58 |
+
subdataset_dd = gr.Dropdown(
|
| 59 |
+
choices=["All"] + ALL_SUBDATASETS,
|
| 60 |
+
value="All",
|
| 61 |
+
label="Subdataset",
|
| 62 |
+
)
|
| 63 |
+
models_dd = gr.Dropdown(
|
| 64 |
+
choices=ALL_MODELS,
|
| 65 |
+
value=ALL_MODELS,
|
| 66 |
+
multiselect=True,
|
| 67 |
+
label="Models",
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
results_table = gr.Dataframe(
|
| 71 |
+
value=build_table(ALL_METRICS[0], "All", ALL_MODELS),
|
| 72 |
+
label="Results",
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
for control in [metric_dd, subdataset_dd, models_dd]:
|
| 76 |
+
control.change(
|
| 77 |
+
fn=build_table,
|
| 78 |
+
inputs=[metric_dd, subdataset_dd, models_dd],
|
| 79 |
+
outputs=results_table,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
with gr.Tab("Results over time"):
|
| 83 |
+
with gr.Row():
|
| 84 |
+
time_metric_dd = gr.Dropdown(
|
| 85 |
+
choices=ALL_METRICS,
|
| 86 |
+
value=ALL_METRICS[0],
|
| 87 |
+
label="Metric",
|
| 88 |
+
)
|
| 89 |
+
time_subdataset_dd = gr.Dropdown(
|
| 90 |
+
choices=ALL_SUBDATASETS,
|
| 91 |
+
value=ALL_SUBDATASETS[0],
|
| 92 |
+
label="Subdataset",
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
rank_plot = gr.Plot(label="Rank over time")
|
| 96 |
+
value_plot = gr.Plot(label="Metric value over time")
|
| 97 |
+
|
| 98 |
+
def update_plots(metric, subdataset):
|
| 99 |
+
fig_rank, fig_value = build_plots(metric, subdataset)
|
| 100 |
+
return fig_rank, fig_value
|
| 101 |
+
|
| 102 |
+
# Initial render
|
| 103 |
+
app.load(
|
| 104 |
+
fn=update_plots,
|
| 105 |
+
inputs=[time_metric_dd, time_subdataset_dd],
|
| 106 |
+
outputs=[rank_plot, value_plot],
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
for control in [time_metric_dd, time_subdataset_dd]:
|
| 110 |
+
control.change(
|
| 111 |
+
fn=update_plots,
|
| 112 |
+
inputs=[time_metric_dd, time_subdataset_dd],
|
| 113 |
+
outputs=[rank_plot, value_plot],
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
if __name__ == "__main__":
|
| 117 |
+
app.launch()
|
mock_evaluation_results.csv
ADDED
|
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset,subdataset,frequency,cutoff,metric,model,value
|
| 2 |
+
gh-archive,stars,daily,2026-01-08,mase,zero_model,2.841
|
| 3 |
+
gh-archive,stars,daily,2026-01-08,mase,seasonal_naive,1.012
|
| 4 |
+
gh-archive,stars,daily,2026-01-08,mase,auto_arima,0.874
|
| 5 |
+
gh-archive,stars,daily,2026-01-08,mase,auto_ets,0.891
|
| 6 |
+
gh-archive,stars,daily,2026-01-08,mase,auto_lgbm,0.782
|
| 7 |
+
gh-archive,stars,daily,2026-01-08,mase,chronos,0.643
|
| 8 |
+
gh-archive,stars,daily,2026-01-08,mase,moirai,0.701
|
| 9 |
+
gh-archive,stars,daily,2026-01-08,mase,timesfm,0.668
|
| 10 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,zero_model,0.421
|
| 11 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,seasonal_naive,0.183
|
| 12 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,auto_arima,0.142
|
| 13 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,auto_ets,0.149
|
| 14 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,auto_lgbm,0.121
|
| 15 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,chronos,0.089
|
| 16 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,moirai,0.098
|
| 17 |
+
gh-archive,stars,daily,2026-01-08,scaled_crps,timesfm,0.093
|
| 18 |
+
gh-archive,stars,daily,2026-01-15,mase,zero_model,2.793
|
| 19 |
+
gh-archive,stars,daily,2026-01-15,mase,seasonal_naive,1.034
|
| 20 |
+
gh-archive,stars,daily,2026-01-15,mase,auto_arima,0.862
|
| 21 |
+
gh-archive,stars,daily,2026-01-15,mase,auto_ets,0.879
|
| 22 |
+
gh-archive,stars,daily,2026-01-15,mase,auto_lgbm,0.801
|
| 23 |
+
gh-archive,stars,daily,2026-01-15,mase,chronos,0.651
|
| 24 |
+
gh-archive,stars,daily,2026-01-15,mase,moirai,0.694
|
| 25 |
+
gh-archive,stars,daily,2026-01-15,mase,timesfm,0.672
|
| 26 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,zero_model,0.415
|
| 27 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,seasonal_naive,0.187
|
| 28 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,auto_arima,0.139
|
| 29 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,auto_ets,0.146
|
| 30 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,auto_lgbm,0.125
|
| 31 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,chronos,0.091
|
| 32 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,moirai,0.096
|
| 33 |
+
gh-archive,stars,daily,2026-01-15,scaled_crps,timesfm,0.094
|
| 34 |
+
gh-archive,stars,daily,2026-01-22,mase,zero_model,2.867
|
| 35 |
+
gh-archive,stars,daily,2026-01-22,mase,seasonal_naive,0.987
|
| 36 |
+
gh-archive,stars,daily,2026-01-22,mase,auto_arima,0.851
|
| 37 |
+
gh-archive,stars,daily,2026-01-22,mase,auto_ets,0.870
|
| 38 |
+
gh-archive,stars,daily,2026-01-22,mase,auto_lgbm,0.769
|
| 39 |
+
gh-archive,stars,daily,2026-01-22,mase,chronos,0.634
|
| 40 |
+
gh-archive,stars,daily,2026-01-22,mase,moirai,0.687
|
| 41 |
+
gh-archive,stars,daily,2026-01-22,mase,timesfm,0.659
|
| 42 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,zero_model,0.428
|
| 43 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,seasonal_naive,0.178
|
| 44 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,auto_arima,0.136
|
| 45 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,auto_ets,0.143
|
| 46 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,auto_lgbm,0.118
|
| 47 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,chronos,0.086
|
| 48 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,moirai,0.094
|
| 49 |
+
gh-archive,stars,daily,2026-01-22,scaled_crps,timesfm,0.090
|
| 50 |
+
gh-archive,stars,daily,2026-01-29,mase,zero_model,2.912
|
| 51 |
+
gh-archive,stars,daily,2026-01-29,mase,seasonal_naive,1.005
|
| 52 |
+
gh-archive,stars,daily,2026-01-29,mase,auto_arima,0.883
|
| 53 |
+
gh-archive,stars,daily,2026-01-29,mase,auto_ets,0.898
|
| 54 |
+
gh-archive,stars,daily,2026-01-29,mase,auto_lgbm,0.793
|
| 55 |
+
gh-archive,stars,daily,2026-01-29,mase,chronos,0.657
|
| 56 |
+
gh-archive,stars,daily,2026-01-29,mase,moirai,0.712
|
| 57 |
+
gh-archive,stars,daily,2026-01-29,mase,timesfm,0.681
|
| 58 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,zero_model,0.434
|
| 59 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,seasonal_naive,0.185
|
| 60 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,auto_arima,0.145
|
| 61 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,auto_ets,0.151
|
| 62 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,auto_lgbm,0.128
|
| 63 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,chronos,0.092
|
| 64 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,moirai,0.101
|
| 65 |
+
gh-archive,stars,daily,2026-01-29,scaled_crps,timesfm,0.096
|
| 66 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,zero_model,3.214
|
| 67 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,seasonal_naive,1.087
|
| 68 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,auto_arima,0.952
|
| 69 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,auto_ets,0.971
|
| 70 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,auto_lgbm,0.845
|
| 71 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,chronos,0.712
|
| 72 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,moirai,0.768
|
| 73 |
+
gh-archive,prs_opened,daily,2026-01-08,mase,timesfm,0.734
|
| 74 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,zero_model,0.478
|
| 75 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,seasonal_naive,0.201
|
| 76 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,auto_arima,0.162
|
| 77 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,auto_ets,0.168
|
| 78 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,auto_lgbm,0.139
|
| 79 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,chronos,0.104
|
| 80 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,moirai,0.115
|
| 81 |
+
gh-archive,prs_opened,daily,2026-01-08,scaled_crps,timesfm,0.108
|
| 82 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,zero_model,3.178
|
| 83 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,seasonal_naive,1.065
|
| 84 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,auto_arima,0.941
|
| 85 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,auto_ets,0.958
|
| 86 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,auto_lgbm,0.861
|
| 87 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,chronos,0.723
|
| 88 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,moirai,0.751
|
| 89 |
+
gh-archive,prs_opened,daily,2026-01-15,mase,timesfm,0.729
|
| 90 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,zero_model,0.471
|
| 91 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,seasonal_naive,0.196
|
| 92 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,auto_arima,0.158
|
| 93 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,auto_ets,0.164
|
| 94 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,auto_lgbm,0.142
|
| 95 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,chronos,0.107
|
| 96 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,moirai,0.112
|
| 97 |
+
gh-archive,prs_opened,daily,2026-01-15,scaled_crps,timesfm,0.105
|
| 98 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,zero_model,3.251
|
| 99 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,seasonal_naive,1.098
|
| 100 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,auto_arima,0.963
|
| 101 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,auto_ets,0.982
|
| 102 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,auto_lgbm,0.837
|
| 103 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,chronos,0.698
|
| 104 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,moirai,0.759
|
| 105 |
+
gh-archive,prs_opened,daily,2026-01-22,mase,timesfm,0.721
|
| 106 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,zero_model,0.483
|
| 107 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,seasonal_naive,0.205
|
| 108 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,auto_arima,0.165
|
| 109 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,auto_ets,0.171
|
| 110 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,auto_lgbm,0.136
|
| 111 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,chronos,0.101
|
| 112 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,moirai,0.113
|
| 113 |
+
gh-archive,prs_opened,daily,2026-01-22,scaled_crps,timesfm,0.106
|
| 114 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,zero_model,3.192
|
| 115 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,seasonal_naive,1.078
|
| 116 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,auto_arima,0.947
|
| 117 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,auto_ets,0.965
|
| 118 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,auto_lgbm,0.852
|
| 119 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,chronos,0.731
|
| 120 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,moirai,0.774
|
| 121 |
+
gh-archive,prs_opened,daily,2026-01-29,mase,timesfm,0.745
|
| 122 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,zero_model,0.475
|
| 123 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,seasonal_naive,0.199
|
| 124 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,auto_arima,0.160
|
| 125 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,auto_ets,0.166
|
| 126 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,auto_lgbm,0.141
|
| 127 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,chronos,0.109
|
| 128 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,moirai,0.117
|
| 129 |
+
gh-archive,prs_opened,daily,2026-01-29,scaled_crps,timesfm,0.111
|
| 130 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,zero_model,3.567
|
| 131 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,seasonal_naive,1.142
|
| 132 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,auto_arima,1.023
|
| 133 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,auto_ets,1.041
|
| 134 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,auto_lgbm,0.912
|
| 135 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,chronos,0.789
|
| 136 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,moirai,0.834
|
| 137 |
+
gh-archive,issues_opened,daily,2026-01-08,mase,timesfm,0.801
|
| 138 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,zero_model,0.512
|
| 139 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,seasonal_naive,0.218
|
| 140 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,auto_arima,0.179
|
| 141 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,auto_ets,0.185
|
| 142 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,auto_lgbm,0.152
|
| 143 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,chronos,0.119
|
| 144 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,moirai,0.128
|
| 145 |
+
gh-archive,issues_opened,daily,2026-01-08,scaled_crps,timesfm,0.122
|
| 146 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,zero_model,3.521
|
| 147 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,seasonal_naive,1.128
|
| 148 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,auto_arima,1.008
|
| 149 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,auto_ets,1.029
|
| 150 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,auto_lgbm,0.925
|
| 151 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,chronos,0.798
|
| 152 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,moirai,0.841
|
| 153 |
+
gh-archive,issues_opened,daily,2026-01-15,mase,timesfm,0.812
|
| 154 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,zero_model,0.508
|
| 155 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,seasonal_naive,0.214
|
| 156 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,auto_arima,0.175
|
| 157 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,auto_ets,0.181
|
| 158 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,auto_lgbm,0.155
|
| 159 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,chronos,0.121
|
| 160 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,moirai,0.131
|
| 161 |
+
gh-archive,issues_opened,daily,2026-01-15,scaled_crps,timesfm,0.124
|
| 162 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,zero_model,3.601
|
| 163 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,seasonal_naive,1.156
|
| 164 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,auto_arima,1.035
|
| 165 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,auto_ets,1.052
|
| 166 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,auto_lgbm,0.898
|
| 167 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,chronos,0.774
|
| 168 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,moirai,0.821
|
| 169 |
+
gh-archive,issues_opened,daily,2026-01-22,mase,timesfm,0.793
|
| 170 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,zero_model,0.519
|
| 171 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,seasonal_naive,0.221
|
| 172 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,auto_arima,0.182
|
| 173 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,auto_ets,0.188
|
| 174 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,auto_lgbm,0.148
|
| 175 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,chronos,0.116
|
| 176 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,moirai,0.126
|
| 177 |
+
gh-archive,issues_opened,daily,2026-01-22,scaled_crps,timesfm,0.119
|
| 178 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,zero_model,3.548
|
| 179 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,seasonal_naive,1.134
|
| 180 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,auto_arima,1.018
|
| 181 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,auto_ets,1.038
|
| 182 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,auto_lgbm,0.921
|
| 183 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,chronos,0.805
|
| 184 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,moirai,0.847
|
| 185 |
+
gh-archive,issues_opened,daily,2026-01-29,mase,timesfm,0.818
|
| 186 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,zero_model,0.514
|
| 187 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,seasonal_naive,0.216
|
| 188 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,auto_arima,0.177
|
| 189 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,auto_ets,0.183
|
| 190 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,auto_lgbm,0.153
|
| 191 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,chronos,0.123
|
| 192 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,moirai,0.132
|
| 193 |
+
gh-archive,issues_opened,daily,2026-01-29,scaled_crps,timesfm,0.125
|
| 194 |
+
gh-archive,pushes,daily,2026-01-08,mase,zero_model,2.634
|
| 195 |
+
gh-archive,pushes,daily,2026-01-08,mase,seasonal_naive,0.967
|
| 196 |
+
gh-archive,pushes,daily,2026-01-08,mase,auto_arima,0.812
|
| 197 |
+
gh-archive,pushes,daily,2026-01-08,mase,auto_ets,0.831
|
| 198 |
+
gh-archive,pushes,daily,2026-01-08,mase,auto_lgbm,0.723
|
| 199 |
+
gh-archive,pushes,daily,2026-01-08,mase,chronos,0.589
|
| 200 |
+
gh-archive,pushes,daily,2026-01-08,mase,moirai,0.641
|
| 201 |
+
gh-archive,pushes,daily,2026-01-08,mase,timesfm,0.612
|
| 202 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,zero_model,0.392
|
| 203 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,seasonal_naive,0.168
|
| 204 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,auto_arima,0.128
|
| 205 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,auto_ets,0.134
|
| 206 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,auto_lgbm,0.108
|
| 207 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,chronos,0.078
|
| 208 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,moirai,0.087
|
| 209 |
+
gh-archive,pushes,daily,2026-01-08,scaled_crps,timesfm,0.082
|
| 210 |
+
gh-archive,pushes,daily,2026-01-15,mase,zero_model,2.601
|
| 211 |
+
gh-archive,pushes,daily,2026-01-15,mase,seasonal_naive,0.951
|
| 212 |
+
gh-archive,pushes,daily,2026-01-15,mase,auto_arima,0.798
|
| 213 |
+
gh-archive,pushes,daily,2026-01-15,mase,auto_ets,0.819
|
| 214 |
+
gh-archive,pushes,daily,2026-01-15,mase,auto_lgbm,0.735
|
| 215 |
+
gh-archive,pushes,daily,2026-01-15,mase,chronos,0.598
|
| 216 |
+
gh-archive,pushes,daily,2026-01-15,mase,moirai,0.634
|
| 217 |
+
gh-archive,pushes,daily,2026-01-15,mase,timesfm,0.608
|
| 218 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,zero_model,0.387
|
| 219 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,seasonal_naive,0.164
|
| 220 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,auto_arima,0.124
|
| 221 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,auto_ets,0.131
|
| 222 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,auto_lgbm,0.111
|
| 223 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,chronos,0.081
|
| 224 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,moirai,0.085
|
| 225 |
+
gh-archive,pushes,daily,2026-01-15,scaled_crps,timesfm,0.079
|
| 226 |
+
gh-archive,pushes,daily,2026-01-22,mase,zero_model,2.687
|
| 227 |
+
gh-archive,pushes,daily,2026-01-22,mase,seasonal_naive,0.978
|
| 228 |
+
gh-archive,pushes,daily,2026-01-22,mase,auto_arima,0.823
|
| 229 |
+
gh-archive,pushes,daily,2026-01-22,mase,auto_ets,0.841
|
| 230 |
+
gh-archive,pushes,daily,2026-01-22,mase,auto_lgbm,0.712
|
| 231 |
+
gh-archive,pushes,daily,2026-01-22,mase,chronos,0.581
|
| 232 |
+
gh-archive,pushes,daily,2026-01-22,mase,moirai,0.628
|
| 233 |
+
gh-archive,pushes,daily,2026-01-22,mase,timesfm,0.601
|
| 234 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,zero_model,0.398
|
| 235 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,seasonal_naive,0.171
|
| 236 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,auto_arima,0.131
|
| 237 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,auto_ets,0.137
|
| 238 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,auto_lgbm,0.105
|
| 239 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,chronos,0.075
|
| 240 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,moirai,0.083
|
| 241 |
+
gh-archive,pushes,daily,2026-01-22,scaled_crps,timesfm,0.078
|
| 242 |
+
gh-archive,pushes,daily,2026-01-29,mase,zero_model,2.718
|
| 243 |
+
gh-archive,pushes,daily,2026-01-29,mase,seasonal_naive,0.992
|
| 244 |
+
gh-archive,pushes,daily,2026-01-29,mase,auto_arima,0.834
|
| 245 |
+
gh-archive,pushes,daily,2026-01-29,mase,auto_ets,0.852
|
| 246 |
+
gh-archive,pushes,daily,2026-01-29,mase,auto_lgbm,0.741
|
| 247 |
+
gh-archive,pushes,daily,2026-01-29,mase,chronos,0.604
|
| 248 |
+
gh-archive,pushes,daily,2026-01-29,mase,moirai,0.651
|
| 249 |
+
gh-archive,pushes,daily,2026-01-29,mase,timesfm,0.623
|
| 250 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,zero_model,0.403
|
| 251 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,seasonal_naive,0.174
|
| 252 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,auto_arima,0.134
|
| 253 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,auto_ets,0.140
|
| 254 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,auto_lgbm,0.112
|
| 255 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,chronos,0.082
|
| 256 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,moirai,0.090
|
| 257 |
+
gh-archive,pushes,daily,2026-01-29,scaled_crps,timesfm,0.085
|
| 258 |
+
gh-archive,stars,weekly,2026-01-12,mase,zero_model,2.512
|
| 259 |
+
gh-archive,stars,weekly,2026-01-12,mase,seasonal_naive,0.934
|
| 260 |
+
gh-archive,stars,weekly,2026-01-12,mase,auto_arima,0.798
|
| 261 |
+
gh-archive,stars,weekly,2026-01-12,mase,auto_ets,0.812
|
| 262 |
+
gh-archive,stars,weekly,2026-01-12,mase,auto_lgbm,0.701
|
| 263 |
+
gh-archive,stars,weekly,2026-01-12,mase,chronos,0.578
|
| 264 |
+
gh-archive,stars,weekly,2026-01-12,mase,moirai,0.623
|
| 265 |
+
gh-archive,stars,weekly,2026-01-12,mase,timesfm,0.598
|
| 266 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,zero_model,0.378
|
| 267 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,seasonal_naive,0.159
|
| 268 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,auto_arima,0.121
|
| 269 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,auto_ets,0.128
|
| 270 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,auto_lgbm,0.103
|
| 271 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,chronos,0.074
|
| 272 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,moirai,0.082
|
| 273 |
+
gh-archive,stars,weekly,2026-01-12,scaled_crps,timesfm,0.077
|
| 274 |
+
gh-archive,stars,weekly,2026-01-19,mase,zero_model,2.478
|
| 275 |
+
gh-archive,stars,weekly,2026-01-19,mase,seasonal_naive,0.921
|
| 276 |
+
gh-archive,stars,weekly,2026-01-19,mase,auto_arima,0.784
|
| 277 |
+
gh-archive,stars,weekly,2026-01-19,mase,auto_ets,0.801
|
| 278 |
+
gh-archive,stars,weekly,2026-01-19,mase,auto_lgbm,0.689
|
| 279 |
+
gh-archive,stars,weekly,2026-01-19,mase,chronos,0.563
|
| 280 |
+
gh-archive,stars,weekly,2026-01-19,mase,moirai,0.612
|
| 281 |
+
gh-archive,stars,weekly,2026-01-19,mase,timesfm,0.584
|
| 282 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,zero_model,0.371
|
| 283 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,seasonal_naive,0.154
|
| 284 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,auto_arima,0.117
|
| 285 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,auto_ets,0.124
|
| 286 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,auto_lgbm,0.098
|
| 287 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,chronos,0.071
|
| 288 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,moirai,0.079
|
| 289 |
+
gh-archive,stars,weekly,2026-01-19,scaled_crps,timesfm,0.074
|
| 290 |
+
gh-archive,stars,weekly,2026-01-26,mase,zero_model,2.549
|
| 291 |
+
gh-archive,stars,weekly,2026-01-26,mase,seasonal_naive,0.945
|
| 292 |
+
gh-archive,stars,weekly,2026-01-26,mase,auto_arima,0.811
|
| 293 |
+
gh-archive,stars,weekly,2026-01-26,mase,auto_ets,0.825
|
| 294 |
+
gh-archive,stars,weekly,2026-01-26,mase,auto_lgbm,0.714
|
| 295 |
+
gh-archive,stars,weekly,2026-01-26,mase,chronos,0.587
|
| 296 |
+
gh-archive,stars,weekly,2026-01-26,mase,moirai,0.638
|
| 297 |
+
gh-archive,stars,weekly,2026-01-26,mase,timesfm,0.608
|
| 298 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,zero_model,0.384
|
| 299 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,seasonal_naive,0.162
|
| 300 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,auto_arima,0.124
|
| 301 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,auto_ets,0.131
|
| 302 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,auto_lgbm,0.106
|
| 303 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,chronos,0.076
|
| 304 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,moirai,0.085
|
| 305 |
+
gh-archive,stars,weekly,2026-01-26,scaled_crps,timesfm,0.080
|
| 306 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,zero_model,2.891
|
| 307 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,seasonal_naive,1.012
|
| 308 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,auto_arima,0.878
|
| 309 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,auto_ets,0.894
|
| 310 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,auto_lgbm,0.768
|
| 311 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,chronos,0.641
|
| 312 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,moirai,0.694
|
| 313 |
+
gh-archive,prs_opened,weekly,2026-01-12,mase,timesfm,0.662
|
| 314 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,zero_model,0.431
|
| 315 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,seasonal_naive,0.178
|
| 316 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,auto_arima,0.141
|
| 317 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,auto_ets,0.148
|
| 318 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,auto_lgbm,0.119
|
| 319 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,chronos,0.088
|
| 320 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,moirai,0.097
|
| 321 |
+
gh-archive,prs_opened,weekly,2026-01-12,scaled_crps,timesfm,0.091
|
| 322 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,zero_model,2.856
|
| 323 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,seasonal_naive,0.998
|
| 324 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,auto_arima,0.865
|
| 325 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,auto_ets,0.882
|
| 326 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,auto_lgbm,0.754
|
| 327 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,chronos,0.628
|
| 328 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,moirai,0.681
|
| 329 |
+
gh-archive,prs_opened,weekly,2026-01-19,mase,timesfm,0.649
|
| 330 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,zero_model,0.425
|
| 331 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,seasonal_naive,0.173
|
| 332 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,auto_arima,0.137
|
| 333 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,auto_ets,0.144
|
| 334 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,auto_lgbm,0.115
|
| 335 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,chronos,0.084
|
| 336 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,moirai,0.093
|
| 337 |
+
gh-archive,prs_opened,weekly,2026-01-19,scaled_crps,timesfm,0.087
|
| 338 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,zero_model,2.923
|
| 339 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,seasonal_naive,1.024
|
| 340 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,auto_arima,0.891
|
| 341 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,auto_ets,0.907
|
| 342 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,auto_lgbm,0.781
|
| 343 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,chronos,0.652
|
| 344 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,moirai,0.708
|
| 345 |
+
gh-archive,prs_opened,weekly,2026-01-26,mase,timesfm,0.674
|
| 346 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,zero_model,0.437
|
| 347 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,seasonal_naive,0.182
|
| 348 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,auto_arima,0.145
|
| 349 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,auto_ets,0.151
|
| 350 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,auto_lgbm,0.122
|
| 351 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,chronos,0.091
|
| 352 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,moirai,0.100
|
| 353 |
+
gh-archive,prs_opened,weekly,2026-01-26,scaled_crps,timesfm,0.094
|
| 354 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,zero_model,3.189
|
| 355 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,seasonal_naive,1.068
|
| 356 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,auto_arima,0.945
|
| 357 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,auto_ets,0.962
|
| 358 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,auto_lgbm,0.834
|
| 359 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,chronos,0.712
|
| 360 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,moirai,0.758
|
| 361 |
+
gh-archive,issues_opened,weekly,2026-01-12,mase,timesfm,0.731
|
| 362 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,zero_model,0.468
|
| 363 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,seasonal_naive,0.195
|
| 364 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,auto_arima,0.158
|
| 365 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,auto_ets,0.164
|
| 366 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,auto_lgbm,0.131
|
| 367 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,chronos,0.101
|
| 368 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,moirai,0.110
|
| 369 |
+
gh-archive,issues_opened,weekly,2026-01-12,scaled_crps,timesfm,0.104
|
| 370 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,zero_model,3.147
|
| 371 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,seasonal_naive,1.051
|
| 372 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,auto_arima,0.932
|
| 373 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,auto_ets,0.948
|
| 374 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,auto_lgbm,0.821
|
| 375 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,chronos,0.698
|
| 376 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,moirai,0.745
|
| 377 |
+
gh-archive,issues_opened,weekly,2026-01-19,mase,timesfm,0.718
|
| 378 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,zero_model,0.461
|
| 379 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,seasonal_naive,0.191
|
| 380 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,auto_arima,0.154
|
| 381 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,auto_ets,0.160
|
| 382 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,auto_lgbm,0.127
|
| 383 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,chronos,0.097
|
| 384 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,moirai,0.106
|
| 385 |
+
gh-archive,issues_opened,weekly,2026-01-19,scaled_crps,timesfm,0.100
|
| 386 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,zero_model,3.221
|
| 387 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,seasonal_naive,1.082
|
| 388 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,auto_arima,0.958
|
| 389 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,auto_ets,0.974
|
| 390 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,auto_lgbm,0.847
|
| 391 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,chronos,0.724
|
| 392 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,moirai,0.771
|
| 393 |
+
gh-archive,issues_opened,weekly,2026-01-26,mase,timesfm,0.743
|
| 394 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,zero_model,0.474
|
| 395 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,seasonal_naive,0.198
|
| 396 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,auto_arima,0.161
|
| 397 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,auto_ets,0.167
|
| 398 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,auto_lgbm,0.134
|
| 399 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,chronos,0.104
|
| 400 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,moirai,0.113
|
| 401 |
+
gh-archive,issues_opened,weekly,2026-01-26,scaled_crps,timesfm,0.107
|
| 402 |
+
gh-archive,pushes,weekly,2026-01-12,mase,zero_model,2.312
|
| 403 |
+
gh-archive,pushes,weekly,2026-01-12,mase,seasonal_naive,0.891
|
| 404 |
+
gh-archive,pushes,weekly,2026-01-12,mase,auto_arima,0.745
|
| 405 |
+
gh-archive,pushes,weekly,2026-01-12,mase,auto_ets,0.762
|
| 406 |
+
gh-archive,pushes,weekly,2026-01-12,mase,auto_lgbm,0.651
|
| 407 |
+
gh-archive,pushes,weekly,2026-01-12,mase,chronos,0.523
|
| 408 |
+
gh-archive,pushes,weekly,2026-01-12,mase,moirai,0.571
|
| 409 |
+
gh-archive,pushes,weekly,2026-01-12,mase,timesfm,0.548
|
| 410 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,zero_model,0.351
|
| 411 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,seasonal_naive,0.148
|
| 412 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,auto_arima,0.112
|
| 413 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,auto_ets,0.118
|
| 414 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,auto_lgbm,0.092
|
| 415 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,chronos,0.065
|
| 416 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,moirai,0.073
|
| 417 |
+
gh-archive,pushes,weekly,2026-01-12,scaled_crps,timesfm,0.068
|
| 418 |
+
gh-archive,pushes,weekly,2026-01-19,mase,zero_model,2.278
|
| 419 |
+
gh-archive,pushes,weekly,2026-01-19,mase,seasonal_naive,0.878
|
| 420 |
+
gh-archive,pushes,weekly,2026-01-19,mase,auto_arima,0.731
|
| 421 |
+
gh-archive,pushes,weekly,2026-01-19,mase,auto_ets,0.749
|
| 422 |
+
gh-archive,pushes,weekly,2026-01-19,mase,auto_lgbm,0.638
|
| 423 |
+
gh-archive,pushes,weekly,2026-01-19,mase,chronos,0.512
|
| 424 |
+
gh-archive,pushes,weekly,2026-01-19,mase,moirai,0.558
|
| 425 |
+
gh-archive,pushes,weekly,2026-01-19,mase,timesfm,0.534
|
| 426 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,zero_model,0.345
|
| 427 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,seasonal_naive,0.144
|
| 428 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,auto_arima,0.108
|
| 429 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,auto_ets,0.114
|
| 430 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,auto_lgbm,0.088
|
| 431 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,chronos,0.062
|
| 432 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,moirai,0.070
|
| 433 |
+
gh-archive,pushes,weekly,2026-01-19,scaled_crps,timesfm,0.065
|
| 434 |
+
gh-archive,pushes,weekly,2026-01-26,mase,zero_model,2.351
|
| 435 |
+
gh-archive,pushes,weekly,2026-01-26,mase,seasonal_naive,0.904
|
| 436 |
+
gh-archive,pushes,weekly,2026-01-26,mase,auto_arima,0.758
|
| 437 |
+
gh-archive,pushes,weekly,2026-01-26,mase,auto_ets,0.774
|
| 438 |
+
gh-archive,pushes,weekly,2026-01-26,mase,auto_lgbm,0.664
|
| 439 |
+
gh-archive,pushes,weekly,2026-01-26,mase,chronos,0.535
|
| 440 |
+
gh-archive,pushes,weekly,2026-01-26,mase,moirai,0.584
|
| 441 |
+
gh-archive,pushes,weekly,2026-01-26,mase,timesfm,0.558
|
| 442 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,zero_model,0.357
|
| 443 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,seasonal_naive,0.151
|
| 444 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,auto_arima,0.115
|
| 445 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,auto_ets,0.121
|
| 446 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,auto_lgbm,0.095
|
| 447 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,chronos,0.068
|
| 448 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,moirai,0.076
|
| 449 |
+
gh-archive,pushes,weekly,2026-01-26,scaled_crps,timesfm,0.071
|
pyproject.toml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "impermanent-leaderboard"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.12"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"gradio>=6.5.1",
|
| 9 |
+
"ipython>=9.10.0",
|
| 10 |
+
"matplotlib>=3.10.8",
|
| 11 |
+
"pandas>=3.0.0",
|
| 12 |
+
]
|
rank_through_time.py
ADDED
|
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib
|
| 2 |
+
matplotlib.use("Agg")
|
| 3 |
+
import pathlib
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import matplotlib.ticker as mticker
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def _add_ranks(df):
|
| 10 |
+
df = df.copy()
|
| 11 |
+
df["cutoff"] = pd.to_datetime(df["cutoff"])
|
| 12 |
+
df["rank"] = df.groupby(["metric", "subdataset", "frequency", "cutoff"])[
|
| 13 |
+
"value"
|
| 14 |
+
].rank(method="min")
|
| 15 |
+
return df
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def _style_rank_ax(ax, n_models):
|
| 19 |
+
ax.set_ylabel("Rank")
|
| 20 |
+
ax.set_ylim(n_models + 0.5, 0.5)
|
| 21 |
+
ax.yaxis.set_major_locator(mticker.MultipleLocator(1))
|
| 22 |
+
ax.tick_params(axis="x", rotation=45)
|
| 23 |
+
ax.grid(True, alpha=0.3)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def _style_value_ax(ax, metric):
|
| 27 |
+
ax.set_ylabel(metric)
|
| 28 |
+
ax.tick_params(axis="x", rotation=45)
|
| 29 |
+
ax.grid(True, alpha=0.3)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def _finish_fig(fig):
|
| 33 |
+
"""Add a single shared legend at the bottom and adjust layout."""
|
| 34 |
+
handles, labels = fig.axes[0].get_legend_handles_labels()
|
| 35 |
+
fig.legend(
|
| 36 |
+
handles, labels,
|
| 37 |
+
loc="lower center",
|
| 38 |
+
ncol=min(len(labels), 4),
|
| 39 |
+
fontsize="small",
|
| 40 |
+
bbox_to_anchor=(0.5, 0),
|
| 41 |
+
)
|
| 42 |
+
fig.subplots_adjust(bottom=0.18)
|
| 43 |
+
fig.tight_layout(rect=[0, 0.08, 1, 1])
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# ββ Public figure builders βββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def plot_rank_per_category(df, metric):
|
| 50 |
+
"""Grid of rank-over-time subplots, one per (subdataset, frequency)."""
|
| 51 |
+
df = _add_ranks(df)
|
| 52 |
+
models = sorted(df["model"].unique())
|
| 53 |
+
n_models = len(models)
|
| 54 |
+
categories = sorted(
|
| 55 |
+
df[["subdataset", "frequency"]]
|
| 56 |
+
.drop_duplicates()
|
| 57 |
+
.itertuples(index=False, name=None)
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
fig, axes = plt.subplots(
|
| 61 |
+
nrows=len(categories), ncols=1,
|
| 62 |
+
figsize=(10, 4 * len(categories)),
|
| 63 |
+
sharex=False, sharey=True,
|
| 64 |
+
)
|
| 65 |
+
if len(categories) == 1:
|
| 66 |
+
axes = [axes]
|
| 67 |
+
|
| 68 |
+
for ax, (subdataset, frequency) in zip(axes, categories):
|
| 69 |
+
sub = df[
|
| 70 |
+
(df["metric"] == metric)
|
| 71 |
+
& (df["subdataset"] == subdataset)
|
| 72 |
+
& (df["frequency"] == frequency)
|
| 73 |
+
]
|
| 74 |
+
pivot = sub.pivot_table(index="cutoff", columns="model", values="rank").sort_index()
|
| 75 |
+
for model in models:
|
| 76 |
+
if model in pivot.columns:
|
| 77 |
+
ax.plot(pivot.index, pivot[model], marker="o", label=model)
|
| 78 |
+
ax.set_title(f"{subdataset} / {frequency}")
|
| 79 |
+
_style_rank_ax(ax, n_models)
|
| 80 |
+
|
| 81 |
+
fig.suptitle(f"Model rank through time β {metric}", fontsize=14)
|
| 82 |
+
_finish_fig(fig)
|
| 83 |
+
return fig
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def plot_avg_rank(df, metric):
|
| 87 |
+
"""Average rank across all categories over time."""
|
| 88 |
+
df = _add_ranks(df)
|
| 89 |
+
models = sorted(df["model"].unique())
|
| 90 |
+
n_models = len(models)
|
| 91 |
+
sub = df[df["metric"] == metric]
|
| 92 |
+
avg_rank = (
|
| 93 |
+
sub.groupby(["model", "cutoff"])["rank"]
|
| 94 |
+
.mean()
|
| 95 |
+
.reset_index()
|
| 96 |
+
.rename(columns={"rank": "avg_rank"})
|
| 97 |
+
)
|
| 98 |
+
pivot = avg_rank.pivot_table(index="cutoff", columns="model", values="avg_rank").sort_index()
|
| 99 |
+
|
| 100 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 101 |
+
for model in models:
|
| 102 |
+
if model in pivot.columns:
|
| 103 |
+
ax.plot(pivot.index, pivot[model], marker="o", label=model)
|
| 104 |
+
ax.set_title(f"Average rank across all categories β {metric}", fontsize=14)
|
| 105 |
+
ax.set_xlabel("Cutoff date")
|
| 106 |
+
_style_rank_ax(ax, n_models)
|
| 107 |
+
_finish_fig(fig)
|
| 108 |
+
return fig
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def plot_value_per_category(df, metric):
|
| 112 |
+
"""Grid of raw-metric-over-time subplots, one per (subdataset, frequency)."""
|
| 113 |
+
df = df.copy()
|
| 114 |
+
df["cutoff"] = pd.to_datetime(df["cutoff"])
|
| 115 |
+
models = sorted(df["model"].unique())
|
| 116 |
+
categories = sorted(
|
| 117 |
+
df[["subdataset", "frequency"]]
|
| 118 |
+
.drop_duplicates()
|
| 119 |
+
.itertuples(index=False, name=None)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
fig, axes = plt.subplots(
|
| 123 |
+
nrows=len(categories), ncols=1,
|
| 124 |
+
figsize=(10, 4 * len(categories)),
|
| 125 |
+
sharex=False,
|
| 126 |
+
)
|
| 127 |
+
if len(categories) == 1:
|
| 128 |
+
axes = [axes]
|
| 129 |
+
|
| 130 |
+
for ax, (subdataset, frequency) in zip(axes, categories):
|
| 131 |
+
sub = df[
|
| 132 |
+
(df["metric"] == metric)
|
| 133 |
+
& (df["subdataset"] == subdataset)
|
| 134 |
+
& (df["frequency"] == frequency)
|
| 135 |
+
]
|
| 136 |
+
pivot = sub.pivot_table(index="cutoff", columns="model", values="value").sort_index()
|
| 137 |
+
for model in models:
|
| 138 |
+
if model in pivot.columns:
|
| 139 |
+
ax.plot(pivot.index, pivot[model], marker="o", label=model)
|
| 140 |
+
ax.set_title(f"{subdataset} / {frequency}")
|
| 141 |
+
_style_value_ax(ax, metric)
|
| 142 |
+
|
| 143 |
+
fig.suptitle(f"Model {metric} through time", fontsize=14)
|
| 144 |
+
_finish_fig(fig)
|
| 145 |
+
return fig
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def plot_avg_value(df, metric):
|
| 149 |
+
"""Average raw metric across all categories over time."""
|
| 150 |
+
df = df.copy()
|
| 151 |
+
df["cutoff"] = pd.to_datetime(df["cutoff"])
|
| 152 |
+
models = sorted(df["model"].unique())
|
| 153 |
+
sub = df[df["metric"] == metric]
|
| 154 |
+
avg_val = (
|
| 155 |
+
sub.groupby(["model", "cutoff"])["value"]
|
| 156 |
+
.mean()
|
| 157 |
+
.reset_index()
|
| 158 |
+
.rename(columns={"value": "avg_value"})
|
| 159 |
+
)
|
| 160 |
+
pivot = avg_val.pivot_table(index="cutoff", columns="model", values="avg_value").sort_index()
|
| 161 |
+
|
| 162 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 163 |
+
for model in models:
|
| 164 |
+
if model in pivot.columns:
|
| 165 |
+
ax.plot(pivot.index, pivot[model], marker="o", label=model)
|
| 166 |
+
ax.set_title(f"Average {metric} across all categories", fontsize=14)
|
| 167 |
+
ax.set_xlabel("Cutoff date")
|
| 168 |
+
_style_value_ax(ax, metric)
|
| 169 |
+
_finish_fig(fig)
|
| 170 |
+
return fig
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def plot_rank_for_subdataset(df, metric, subdataset):
|
| 174 |
+
"""Rank over time for a single subdataset (all frequencies as subplots)."""
|
| 175 |
+
df = _add_ranks(df)
|
| 176 |
+
models = sorted(df["model"].unique())
|
| 177 |
+
n_models = len(models)
|
| 178 |
+
frequencies = sorted(
|
| 179 |
+
df[df["subdataset"] == subdataset]["frequency"].unique()
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
fig, axes = plt.subplots(
|
| 183 |
+
nrows=len(frequencies), ncols=1,
|
| 184 |
+
figsize=(10, 4 * len(frequencies)),
|
| 185 |
+
sharex=False, sharey=True,
|
| 186 |
+
squeeze=False,
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
for ax_row, frequency in zip(axes, frequencies):
|
| 190 |
+
ax = ax_row[0]
|
| 191 |
+
sub = df[
|
| 192 |
+
(df["metric"] == metric)
|
| 193 |
+
& (df["subdataset"] == subdataset)
|
| 194 |
+
& (df["frequency"] == frequency)
|
| 195 |
+
]
|
| 196 |
+
pivot = sub.pivot_table(index="cutoff", columns="model", values="rank").sort_index()
|
| 197 |
+
for model in models:
|
| 198 |
+
if model in pivot.columns:
|
| 199 |
+
ax.plot(pivot.index, pivot[model], marker="o", label=model)
|
| 200 |
+
ax.set_title(f"{subdataset} / {frequency}")
|
| 201 |
+
_style_rank_ax(ax, n_models)
|
| 202 |
+
|
| 203 |
+
fig.suptitle(f"Model rank through time β {metric}", fontsize=14)
|
| 204 |
+
_finish_fig(fig)
|
| 205 |
+
return fig
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
def plot_value_for_subdataset(df, metric, subdataset):
|
| 209 |
+
"""Raw metric over time for a single subdataset (all frequencies as subplots)."""
|
| 210 |
+
df = df.copy()
|
| 211 |
+
df["cutoff"] = pd.to_datetime(df["cutoff"])
|
| 212 |
+
models = sorted(df["model"].unique())
|
| 213 |
+
frequencies = sorted(
|
| 214 |
+
df[df["subdataset"] == subdataset]["frequency"].unique()
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
fig, axes = plt.subplots(
|
| 218 |
+
nrows=len(frequencies), ncols=1,
|
| 219 |
+
figsize=(10, 4 * len(frequencies)),
|
| 220 |
+
sharex=False,
|
| 221 |
+
squeeze=False,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
for ax_row, frequency in zip(axes, frequencies):
|
| 225 |
+
ax = ax_row[0]
|
| 226 |
+
sub = df[
|
| 227 |
+
(df["metric"] == metric)
|
| 228 |
+
& (df["subdataset"] == subdataset)
|
| 229 |
+
& (df["frequency"] == frequency)
|
| 230 |
+
]
|
| 231 |
+
pivot = sub.pivot_table(index="cutoff", columns="model", values="value").sort_index()
|
| 232 |
+
for model in models:
|
| 233 |
+
if model in pivot.columns:
|
| 234 |
+
ax.plot(pivot.index, pivot[model], marker="o", label=model)
|
| 235 |
+
ax.set_title(f"{subdataset} / {frequency}")
|
| 236 |
+
_style_value_ax(ax, metric)
|
| 237 |
+
|
| 238 |
+
fig.suptitle(f"Model {metric} through time", fontsize=14)
|
| 239 |
+
_finish_fig(fig)
|
| 240 |
+
return fig
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
# ββ CLI: save all figures to disk ββββββββββββββββββββββββββββββββββββββββββββ
|
| 244 |
+
|
| 245 |
+
if __name__ == "__main__":
|
| 246 |
+
OUT = pathlib.Path("figures/rank_through_time")
|
| 247 |
+
OUT.mkdir(parents=True, exist_ok=True)
|
| 248 |
+
|
| 249 |
+
raw = pd.read_csv("mock_evaluation_results.csv")
|
| 250 |
+
raw = raw[raw["model"] != "zero_model"]
|
| 251 |
+
metrics = sorted(raw["metric"].unique())
|
| 252 |
+
|
| 253 |
+
for metric in metrics:
|
| 254 |
+
for fn, prefix in [
|
| 255 |
+
(plot_rank_per_category, "rank_per_category"),
|
| 256 |
+
(plot_value_per_category, "value_per_category"),
|
| 257 |
+
(plot_avg_rank, "avg_rank"),
|
| 258 |
+
(plot_avg_value, "avg_value"),
|
| 259 |
+
]:
|
| 260 |
+
fig = fn(raw, metric)
|
| 261 |
+
path = OUT / f"{prefix}_{metric}.png"
|
| 262 |
+
fig.savefig(path, dpi=150, bbox_inches="tight")
|
| 263 |
+
plt.close(fig)
|
| 264 |
+
print(f"Saved {path}")
|
| 265 |
+
|
| 266 |
+
print("Done.")
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|