import sys import librosa from transformers import Pop2PianoForConditionalGeneration, Pop2PianoProcessor, Pop2PianoTokenizer import torch from post_processor import post_process import tempfile import shutil def generate_midi(song_path, output_dir=None): if output_dir is None: output_dir = "./Outputs" print("Loading Model...") device = "cuda" if torch.cuda.is_available() else "cpu" model = Pop2PianoForConditionalGeneration.from_pretrained("Tim-gubski/Audio2Hero").to(device) model.eval() processor = Pop2PianoProcessor.from_pretrained("sweetcocoa/pop2piano") tokenizer = Pop2PianoTokenizer.from_pretrained("sweetcocoa/pop2piano") print("Processing Song...") # load an example audio file and corresponding ground truth midi file audio, sr = librosa.load(song_path, sr=44100) # feel free to change the sr to a suitable value. inputs = processor(audio=audio, sampling_rate=sr, return_tensors="pt") # generate model output print("Generating output...") model.generation_config.output_logits = True model.generation_config.return_dict_in_generate = True model_output = model.generate(inputs["input_features"].to(device)) tokenizer_output = processor.batch_decode( token_ids=model_output.sequences.cpu(), feature_extractor_output=inputs ) # save to temp file temp_dir = tempfile.TemporaryDirectory() tokenizer_output["pretty_midi_objects"][0].write(f"{temp_dir.name}/temp.mid") print("Post Processing...") post_process(song_path, f"{temp_dir.name}/temp.mid", output_dir) # zip folder song_name = song_path.split("/")[-1] song_name = ".".join(song_name.split(".")[0:-1]) shutil.make_archive(f"{output_dir}/{song_name}", 'zip', f"{output_dir}/{song_name}") temp_dir.cleanup() print("Done.") return f"{output_dir}/{song_name}.zip" if __name__=="__main__": args = sys.argv[1:] song_path = args[0] output_dir = args[1] generate_midi(song_path, output_dir)