import gradio as gr import numpy as np import torch from datasets import load_dataset import librosa from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline from transformers import WhisperProcessor, WhisperForConditionalGeneration device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint # asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) asr_processor = WhisperProcessor.from_pretrained("openai/whisper-base") asr_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to(device) asr_forced_decoder_ids = asr_processor.get_decoder_prompt_ids(language="dutch", task="transcribe") # load text-to-speech checkpoint and speaker embeddings if 0: processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl") model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device) if 1: from transformers import VitsModel, VitsTokenizer model = VitsModel.from_pretrained("Matthijs/mms-tts-fra") tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def translate(audio): if 0: outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language":"dutch", "task":"transcribe"}) return outputs["text"] else: x, sr = librosa.load(audio) input_features = asr_processor(x, sampling_rate=16000, return_tensors="pt").input_features predicted_ids = asr_model.generate(input_features, forced_decoder_ids=asr_forced_decoder_ids) # decode token ids to text transcription = asr_processor.batch_decode(predicted_ids, skip_special_tokens=True) return transcription def synthesise(text): if 0: inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() if 1: inputs = tokenizer(text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs.audio[0] return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) print(translated_text) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()