import gradio as gr from transformers import pipeline from sentence_transformers import SentenceTransformer, util generator_a = pipeline("text-generation", model="gpt2") generator_b = pipeline("text2text-generation", model="google/flan-t5-base") similarity_model = SentenceTransformer("sentence-transformers/paraphrase-MiniLM-L6-v2") def comparar(prompt): resp_a = generator_a(prompt, max_new_tokens=60, temperature=0.7)[0]["generated_text"] resp_b = generator_b(prompt, max_new_tokens=60, temperature=0.7)[0]["generated_text"] emb_a = similarity_model.encode(resp_a, convert_to_tensor=True) emb_b = similarity_model.encode(resp_b, convert_to_tensor=True) similaridade = util.cos_sim(emb_a, emb_b).item() return resp_a.strip(), resp_b.strip(), f"{similaridade:.4f}" gr.Interface( fn=comparar, inputs=gr.Textbox(label="Digite um prompt"), outputs=[ gr.Textbox(label="Resposta do GPT-2"), gr.Textbox(label="Resposta do Flan-T5"), gr.Textbox(label="Similaridade entre respostas") ], title="Comparador de Modelos LLM Leves" ).launch()