#!/usr/bin/env python3 # -*- coding:utf-8 -*- # This code is based on # https://github.com/ultralytics/yolov5/blob/master/utils/dataloaders.py import math import random import cv2 import numpy as np def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): # HSV color-space augmentation if hgain or sgain or vgain: r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) dtype = im.dtype # uint8 x = np.arange(0, 256, dtype=r.dtype) lut_hue = ((x * r[0]) % 180).astype(dtype) lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) lut_val = np.clip(x * r[2], 0, 255).astype(dtype) im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32): # Resize and pad image while meeting stride-multiple constraints shape = im.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better val mAP) r = min(r, 1.0) # Compute padding new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return im, r, (dw, dh) def mixup(im, labels, im2, labels2): # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 im = (im * r + im2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) return im, labels def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio w1, h1 = box1[2] - box1[0], box1[3] - box1[1] w2, h2 = box2[2] - box2[0], box2[3] - box2[1] ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates def random_affine(img, labels=(), degrees=10, translate=.1, scale=.1, shear=10, new_shape=(640,640)): n = len(labels) height,width = new_shape M,s = get_transform_matrix(img.shape[:2],(height,width),degrees,scale,shear,translate) if (M != np.eye(3)).any(): # image changed img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) # Transform label coordinates if n: new = np.zeros((n, 4)) xy = np.ones((n * 4, 3)) xy[:, :2] = labels[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 xy = xy @ M.T # transform xy = xy[:, :2].reshape(n, 8) # perspective rescale or affine # create new boxes x = xy[:, [0, 2, 4, 6]] y = xy[:, [1, 3, 5, 7]] new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T # clip new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) # filter candidates i = box_candidates(box1=labels[:, 1:5].T * s, box2=new.T, area_thr=0.1) labels = labels[i] labels[:, 1:5] = new[i] return img, labels def get_transform_matrix(img_shape,new_shape,degrees,scale,shear,translate): new_height,new_width = new_shape # Center C = np.eye(3) C[0, 2] = -img_shape[1] / 2 # x translation (pixels) C[1, 2] = -img_shape[0] / 2 # y translation (pixels) # Rotation and Scale R = np.eye(3) a = random.uniform(-degrees, degrees) # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations s = random.uniform(1 - scale, 1 + scale) # s = 2 ** random.uniform(-scale, scale) R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) # Shear S = np.eye(3) S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) # Translation T = np.eye(3) T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * new_width # x translation (pixels) T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * new_height # y transla ion (pixels) # Combined rotation matrix M = T @ S @ R @ C # order of operations (right to left) is IMPORTANT return M,s def mosaic_augmentation(img_size, imgs, hs, ws, labels, hyp): assert len(imgs)==4, "Mosaic augmentaion of current version only supports 4 images." labels4 = [] s = img_size yc, xc = (int(random.uniform(s//2, 3*s//2)) for _ in range(2)) # mosaic center x, y for i in range(len(imgs)): # Load image img, h, w = imgs[i],hs[i],ws[i] # place img in img4 if i == 0: # top left img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] padw = x1a - x1b padh = y1a - y1b # Labels labels_per_img= labels[i].copy() if labels_per_img.size: boxes = np.copy(labels_per_img[:,1:]) boxes[:, 0] = w * (labels_per_img[:, 1] - labels_per_img[:, 3] / 2) + padw # top left x boxes[:, 1] = h * (labels_per_img[:, 2] - labels_per_img[:, 4] / 2) + padh # top left y boxes[:, 2] = w * (labels_per_img[:, 1] + labels_per_img[:, 3] / 2) + padw # bottom right x boxes[:, 3] = h * (labels_per_img[:, 2] + labels_per_img[:, 4] / 2) + padh # bottom right y labels_per_img[:,1:] = boxes labels4.append(labels_per_img) # Concat/clip labels labels4 = np.concatenate(labels4, 0) for x in (labels4[:, 1:]): np.clip(x, 0, 2 * s, out=x) # Augment img4, labels4 = random_affine(img4, labels4, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear']) return img4, labels4