import gradio as gr import requests import random import os import zipfile # built in module for unzipping files (thank god) import librosa import time from infer_rvc_python import BaseLoader from pydub import AudioSegment from tts_voice import tts_order_voice import edge_tts import tempfile import anyio from audio_separator.separator import Separator language_dict = tts_order_voice # ilaria tts implementation :rofl: async def text_to_speech_edge(text, language_code): voice = language_dict[language_code] communicate = edge_tts.Communicate(text, voice) with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) return tmp_path # fucking dogshit toggle try: import spaces spaces_status = True except ImportError: spaces_status = False separator = Separator() converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None) # <- yeah so like this handles rvc global pth_file global index_file pth_file = "model.pth" index_file = "model.index" #CONFIGS TEMP_DIR = "temp" MODEL_PREFIX = "model" PITCH_ALGO_OPT = [ "pm", "harvest", "crepe", "rmvpe", "rmvpe+", ] UVR_5_MODELS = [ {"model_name": "BS-Roformer-Viperx-1297", "checkpoint": "model_bs_roformer_ep_317_sdr_12.9755.ckpt"}, {"model_name": "MDX23C-InstVoc HQ 2", "checkpoint": "MDX23C-8KFFT-InstVoc_HQ_2.ckpt"}, {"model_name": "Kim Vocal 2", "checkpoint": "Kim_Vocal_2.onnx"}, {"model_name": "5_HP-Karaoke", "checkpoint": "5_HP-Karaoke-UVR.pth"}, {"model_name": "UVR-DeNoise by FoxJoy", "checkpoint": "UVR-DeNoise.pth"}, {"model_name": "UVR-DeEcho-DeReverb by FoxJoy", "checkpoint": "UVR-DeEcho-DeReverb.pth"}, ] os.makedirs(TEMP_DIR, exist_ok=True) def unzip_file(file): filename = os.path.basename(file).split(".")[0] # converts "model.zip" to "model" so we can do things with zipfile.ZipFile(file, 'r') as zip_ref: zip_ref.extractall(os.path.join(TEMP_DIR, filename)) # might not be very ram efficient... return True def progress_bar(total, current): # best progress bar ever trust me sunglasses emoji 😎 return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%" def download_from_url(url, filename=None): if "/blob/" in url: url = url.replace("/blob/", "/resolve/") # made it delik proof 😎 if "huggingface" not in url: return ["The URL must be from huggingface", "Failed", "Failed"] if filename is None: filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip") response = requests.get(url) total = int(response.headers.get('content-length', 0)) # bytes to download (length of the file) if total > 500000000: return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"] current = 0 with open(filename, "wb") as f: for data in response.iter_content(chunk_size=4096): # download in chunks of 4096 bytes (4kb - helps with memory usage and speed) f.write(data) current += len(data) print(progress_bar(total, current), end="\r") # \r is a carriage return, it moves the cursor to the start of the line so its like tqdm sunglasses emoji 😎 # unzip because the model is in a zip file lel try: unzip_file(filename) except Exception as e: return ["Failed to unzip the file", "Failed", "Failed"] # return early if it fails and like tell the user but its dogshit hahahahahahaha 😎 According to all known laws aviation, there is no way a bee should be able to fly. unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0]) # just do what we did in unzip_file because we need the directory pth_files = [] index_files = [] for root, dirs, files in os.walk(unzipped_dir): # could be done more efficiently because nobody stores models in subdirectories but like who cares (it's a futureproofing thing lel) for file in files: if file.endswith(".pth"): pth_files.append(os.path.join(root, file)) elif file.endswith(".index"): index_files.append(os.path.join(root, file)) print(pth_files, index_files) # debug print because im fucking stupid and i need to see what is going on global pth_file global index_file pth_file = pth_files[0] index_file = index_files[0] pth_file_ui.value = pth_file index_file_ui.value = index_file print(pth_file_ui.value) print(index_file_ui.value) return ["Downloaded as " + filename, pth_files[0], index_files[0]] def inference(audio, model_name): output_data = inf_handler(audio, model_name) vocals = output_data[0] inst = output_data[1] return vocals, inst if spaces_status: @spaces.GPU() def convert_now(audio_files, random_tag, converter): return converter( audio_files, random_tag, overwrite=False, parallel_workers=8 ) else: def convert_now(audio_files, random_tag, converter): return converter( audio_files, random_tag, overwrite=False, parallel_workers=8 ) def calculate_remaining_time(epochs, seconds_per_epoch): total_seconds = epochs * seconds_per_epoch hours = total_seconds // 3600 minutes = (total_seconds % 3600) // 60 seconds = total_seconds % 60 if hours == 0: return f"{int(minutes)} minutes" elif hours == 1: return f"{int(hours)} hour and {int(minutes)} minutes" else: return f"{int(hours)} hours and {int(minutes)} minutes" def inf_handler(audio, model_name): # its a shame that zerogpu just WONT cooperate with us model_found = False for model_info in UVR_5_MODELS: if model_info["model_name"] == model_name: separator.load_model(model_info["checkpoint"]) model_found = True break if not model_found: separator.load_model() output_files = separator.separate(audio) vocals = output_files[0] inst = output_files[1] return vocals, inst def run( audio_files, pitch_alg, pitch_lvl, index_inf, r_m_f, e_r, c_b_p, ): if not audio_files: raise ValueError("The audio pls") if isinstance(audio_files, str): audio_files = [audio_files] try: duration_base = librosa.get_duration(filename=audio_files[0]) print("Duration:", duration_base) except Exception as e: print(e) random_tag = "USER_"+str(random.randint(10000000, 99999999)) file_m = pth_file_ui.value file_index = index_file_ui.value print("Random tag:", random_tag) print("File model:", file_m) print("Pitch algorithm:", pitch_alg) print("Pitch level:", pitch_lvl) print("File index:", file_index) print("Index influence:", index_inf) print("Respiration median filtering:", r_m_f) print("Envelope ratio:", e_r) converter.apply_conf( tag=random_tag, file_model=file_m, pitch_algo=pitch_alg, pitch_lvl=pitch_lvl, file_index=file_index, index_influence=index_inf, respiration_median_filtering=r_m_f, envelope_ratio=e_r, consonant_breath_protection=c_b_p, resample_sr=44100 if audio_files[0].endswith('.mp3') else 0, ) time.sleep(0.1) result = convert_now(audio_files, random_tag, converter) print("Result:", result) return result[0] def upload_model(index_file, pth_file): pth_file = pth_file.name index_file = index_file.name pth_file_ui.value = pth_file index_file_ui.value = index_file return "Uploaded!" with gr.Blocks(theme="Ilaria RVC") as demo: gr.Markdown("## Ilaria RVC 💖") with gr.Tab("Inference"): sound_gui = gr.Audio(value=None,type="filepath",autoplay=False,visible=True,) pth_file_ui = gr.Textbox(label="Model pth file",value=pth_file,visible=False,interactive=False,) index_file_ui = gr.Textbox(label="Index pth file",value=index_file,visible=False,interactive=False,) with gr.Accordion("Settings", open=False): pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT,value=PITCH_ALGO_OPT[4],label="Pitch algorithm",visible=True,interactive=True,) pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')",minimum=-24,maximum=24,step=1,value=0,visible=True,interactive=True,) index_inf_conf = gr.Slider(minimum=0,maximum=1,label="Index influence -> How much accent is applied",value=0.75,) respiration_filter_conf = gr.Slider(minimum=0,maximum=7,label="Respiration median filtering",value=3,step=1,interactive=True,) envelope_ratio_conf = gr.Slider(minimum=0,maximum=1,label="Envelope ratio",value=0.25,interactive=True,) consonant_protec_conf = gr.Slider(minimum=0,maximum=0.5,label="Consonant breath protection",value=0.5,interactive=True,) button_conf = gr.Button("Convert",variant="primary",) output_conf = gr.Audio(type="filepath",label="Output",) button_conf.click(lambda :None, None, output_conf) button_conf.click( run, inputs=[ sound_gui, pitch_algo_conf, pitch_lvl_conf, index_inf_conf, respiration_filter_conf, envelope_ratio_conf, consonant_protec_conf, ], outputs=[output_conf], ) with gr.Tab("Ilaria TTS"): text_tts = gr.Textbox(label="Text", placeholder="Hello!", lines=3, interactive=True,) dropdown_tts = gr.Dropdown(label="Language and Model",choices=list(language_dict.keys()),interactive=True, value=list(language_dict.keys())[0]) button_tts = gr.Button("Speak", variant="primary",) output_tts = gr.Audio(type="filepath", label="Output",) button_tts.click(text_to_speech_edge, inputs=[text_tts, dropdown_tts], outputs=[output_tts]) with gr.Tab("Model Loader (Download and Upload)"): with gr.Accordion("Model Downloader", open=False): gr.Markdown( "Download the model from the following URL and upload it here. (Hugginface RVC model)" ) model = gr.Textbox(lines=1, label="Model URL") download_button = gr.Button("Download Model") status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False) model_pth = gr.Textbox(lines=1, label="Model pth file", placeholder="Waiting....", interactive=False) index_pth = gr.Textbox(lines=1, label="Index pth file", placeholder="Waiting....", interactive=False) download_button.click(download_from_url, model, outputs=[status, model_pth, index_pth]) with gr.Accordion("Upload A Model", open=False): index_file_upload = gr.File(label="Index File (.index)") pth_file_upload = gr.File(label="Model File (.pth)") upload_button = gr.Button("Upload Model") upload_status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False) upload_button.click(upload_model, [index_file_upload, pth_file_upload], upload_status) with gr.Tab("Vocal Separator (UVR)"): gr.Markdown("Separate vocals and instruments from an audio file using UVR models. - This is only on CPU due to ZeroGPU being ZeroGPU :(") uvr5_audio_file = gr.Audio(label="Audio File",type="filepath") with gr.Row(): uvr5_model = gr.Dropdown(label="Model", choices=[model["model_name"] for model in UVR_5_MODELS]) uvr5_button = gr.Button("Separate Vocals", variant="primary",) uvr5_output_voc = gr.Audio(type="filepath", label="Output 1",) # UVR models sometimes output it in a weird way where it's like the positions swap randomly, so let's just call them Outputs lol uvr5_output_inst = gr.Audio(type="filepath", label="Output 2",) uvr5_button.click(inference, [uvr5_audio_file, uvr5_model], [uvr5_output_voc, uvr5_output_inst]) with gr.Tab("Extra"): with gr.Accordion("Training Time Calculator", open=False): with gr.Column(): epochs_input = gr.Number(label="Number of Epochs") seconds_input = gr.Number(label="Seconds per Epoch") calculate_button = gr.Button("Calculate Time Remaining") remaining_time_output = gr.Textbox(label="Remaining Time", interactive=False) calculate_button.click( fn=calculate_remaining_time, inputs=[epochs_input, seconds_input], outputs=[remaining_time_output] ) with gr.Accordion("Model Fusion", open=False): gr.Markdown(value="Fusion of two models to create a new model - coming soon! 😎") with gr.Accordion("Model Quantization", open=False): gr.Markdown(value="Quantization of a model to reduce its size - coming soon! 😎") with gr.Accordion("Training Helper", open=False): gr.Markdown(value="Help for training models - coming soon! 😎") with gr.Tab("Credits"): gr.Markdown( """ Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo) The Inference code is made by [r3gm](https://huggingface.co/r3gm) (his module helped form this space 💖) made with ❤️ by [mikus](https://github.com/cappuch) - i make this ui........ ## In loving memory of JLabDX 🕊️ """ ) demo.queue(api_open=False).launch(show_api=False) # idk ilaria if you want or dont want to