# A portable utility module for the demo programs # %% import os import numpy as np import einops as ein import torch from torch import nn from torch.nn import functional as F import fast_pytorch_kmeans as fpk from typing import Literal, Union, List # %% # Extract features from a Dino-v2 model _DINO_V2_MODELS = Literal["dinov2_vits14", "dinov2_vitb14", \ "dinov2_vitl14", "dinov2_vitg14"] _DINO_FACETS = Literal["query", "key", "value", "token"] class DinoV2ExtractFeatures: """ Extract features from an intermediate layer in Dino-v2 """ def __init__(self, dino_model: _DINO_V2_MODELS, layer: int, facet: _DINO_FACETS="token", use_cls=False, norm_descs=True, device: str = "cpu") -> None: """ Parameters: - dino_model: The DINO-v2 model to use - layer: The layer to extract features from - facet: "query", "key", or "value" for the attention facets. "token" for the output of the layer. - use_cls: If True, the CLS token (first item) is also included in the returned list of descriptors. Otherwise, only patch descriptors are used. - norm_descs: If True, the descriptors are normalized - device: PyTorch device to use """ self.vit_type: str = dino_model self.dino_model: nn.Module = torch.hub.load( 'facebookresearch/dinov2', dino_model) self.device = torch.device(device) self.dino_model = self.dino_model.eval().to(self.device) self.layer: int = layer self.facet = facet if self.facet == "token": self.fh_handle = self.dino_model.blocks[self.layer].\ register_forward_hook( self._generate_forward_hook()) else: self.fh_handle = self.dino_model.blocks[self.layer].\ attn.qkv.register_forward_hook( self._generate_forward_hook()) self.use_cls = use_cls self.norm_descs = norm_descs # Hook data self._hook_out = None def _generate_forward_hook(self): def _forward_hook(module, inputs, output): self._hook_out = output return _forward_hook def __call__(self, img: torch.Tensor) -> torch.Tensor: """ Parameters: - img: The input image """ with torch.no_grad(): res = self.dino_model(img) if self.use_cls: res = self._hook_out else: res = self._hook_out[:, 1:, ...] if self.facet in ["query", "key", "value"]: d_len = res.shape[2] // 3 if self.facet == "query": res = res[:, :, :d_len] elif self.facet == "key": res = res[:, :, d_len:2*d_len] else: res = res[:, :, 2*d_len:] if self.norm_descs: res = F.normalize(res, dim=-1) self._hook_out = None # Reset the hook return res def __del__(self): self.fh_handle.remove() # %% # VLAD global descriptor implementation class VLAD: """ An implementation of VLAD algorithm given database and query descriptors. Constructor arguments: - num_clusters: Number of cluster centers for VLAD - desc_dim: Descriptor dimension. If None, then it is inferred when running `fit` method. - intra_norm: If True, intra normalization is applied when constructing VLAD - norm_descs: If True, the given descriptors are normalized before training and predicting VLAD descriptors. Different from the `intra_norm` argument. - dist_mode: Distance mode for KMeans clustering for vocabulary (not residuals). Must be in {'euclidean', 'cosine'}. - vlad_mode: Mode for descriptor assignment (to cluster centers) in VLAD generation. Must be in {'soft', 'hard'} - soft_temp: Temperature for softmax (if 'vald_mode' is 'soft') for assignment - cache_dir: Directory to cache the VLAD vectors. If None, then no caching is done. If a str, then it is assumed as the folder path. Use absolute paths. Notes: - Arandjelovic, Relja, and Andrew Zisserman. "All about VLAD." Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2013. """ def __init__(self, num_clusters: int, desc_dim: Union[int, None]=None, intra_norm: bool=True, norm_descs: bool=True, dist_mode: str="cosine", vlad_mode: str="hard", soft_temp: float=1.0, cache_dir: Union[str,None]=None) -> None: self.num_clusters = num_clusters self.desc_dim = desc_dim self.intra_norm = intra_norm self.norm_descs = norm_descs self.mode = dist_mode self.vlad_mode = str(vlad_mode).lower() assert self.vlad_mode in ['soft', 'hard'] self.soft_temp = soft_temp # Set in the training phase self.c_centers = None self.kmeans = None # Set the caching self.cache_dir = cache_dir if self.cache_dir is not None: self.cache_dir = os.path.abspath(os.path.expanduser( self.cache_dir)) if not os.path.exists(self.cache_dir): os.makedirs(self.cache_dir) print(f"Created cache directory: {self.cache_dir}") else: print("Warning: Cache directory already exists: " \ f"{self.cache_dir}") else: print("VLAD caching is disabled.") def can_use_cache_vlad(self): """ Checks if the cache directory is a valid cache directory. For it to be valid, it must exist and should at least include the cluster centers file. Returns: - True if the cache directory is valid - False if - the cache directory doesn't exist - exists but doesn't contain the cluster centers - no caching is set in constructor """ if self.cache_dir is None: return False if not os.path.exists(self.cache_dir): return False if os.path.exists(f"{self.cache_dir}/c_centers.pt"): return True else: return False def can_use_cache_ids(self, cache_ids: Union[List[str], str, None], only_residuals: bool=False) -> bool: """ Checks if the given cache IDs exist in the cache directory and returns True if all of them exist. The cache is stored in the following files: - c_centers.pt: Cluster centers - `cache_id`_r.pt: Residuals for VLAD - `cache_id`_l.pt: Labels for VLAD (hard assignment) - `cache_id`_s.pt: Soft assignment for VLAD The function returns False if cache cannot be used or if any of the cache IDs are not found. If all cache IDs are found, then True is returned. This function is mainly for use outside the VLAD class. """ if not self.can_use_cache_vlad(): return False if cache_ids is None: return False if isinstance(cache_ids, str): cache_ids = [cache_ids] for cache_id in cache_ids: if not os.path.exists( f"{self.cache_dir}/{cache_id}_r.pt"): return False if self.vlad_mode == "hard" and not os.path.exists( f"{self.cache_dir}/{cache_id}_l.pt") and not \ only_residuals: return False if self.vlad_mode == "soft" and not os.path.exists( f"{self.cache_dir}/{cache_id}_s.pt") and not \ only_residuals: return False return True # Generate cluster centers def fit(self, train_descs: Union[np.ndarray, torch.Tensor, None]): """ Using the training descriptors, generate the cluster centers (vocabulary). Function expects all descriptors in a single list (see `fit_and_generate` for a batch of images). If the cache directory is valid, then retrieves cluster centers from there (the `train_descs` are ignored). Otherwise, stores the cluster centers in the cache directory (if using caching). Parameters: - train_descs: Training descriptors of shape [num_train_desc, desc_dim]. If None, then caching should be valid (else ValueError). """ # Clustering to create vocabulary self.kmeans = fpk.KMeans(self.num_clusters, mode=self.mode) # Check if cache exists if self.can_use_cache_vlad(): print("Using cached cluster centers") self.c_centers = torch.load( f"{self.cache_dir}/c_centers.pt") self.kmeans.centroids = self.c_centers if self.desc_dim is None: self.desc_dim = self.c_centers.shape[1] print(f"Desc dim set to {self.desc_dim}") else: if train_descs is None: raise ValueError("No training descriptors given") if type(train_descs) == np.ndarray: train_descs = torch.from_numpy(train_descs).\ to(torch.float32) if self.desc_dim is None: self.desc_dim = train_descs.shape[1] if self.norm_descs: train_descs = F.normalize(train_descs) self.kmeans.fit(train_descs) self.c_centers = self.kmeans.centroids if self.cache_dir is not None: print("Caching cluster centers") torch.save(self.c_centers, f"{self.cache_dir}/c_centers.pt") def fit_and_generate(self, train_descs: Union[np.ndarray, torch.Tensor]) \ -> torch.Tensor: """ Given a batch of descriptors over images, `fit` the VLAD and generate the global descriptors for the training images. Use only when there are a fixed number of descriptors in each image. Parameters: - train_descs: Training image descriptors of shape [num_imgs, num_descs, desc_dim]. There are 'num_imgs' images, each image has 'num_descs' descriptors and each descriptor is 'desc_dim' dimensional. Returns: - train_vlads: The VLAD vectors of all training images. Shape: [num_imgs, num_clusters*desc_dim] """ # Generate vocabulary all_descs = ein.rearrange(train_descs, "n k d -> (n k) d") self.fit(all_descs) # For each image, stack VLAD return torch.stack([self.generate(tr) for tr in train_descs]) def generate(self, query_descs: Union[np.ndarray, torch.Tensor], cache_id: Union[str, None]=None) -> torch.Tensor: """ Given the query descriptors, generate a VLAD vector. Call `fit` before using this method. Use this for only single images and with descriptors stacked. Use function `generate_multi` for multiple images. Parameters: - query_descs: Query descriptors of shape [n_q, desc_dim] where 'n_q' is number of 'desc_dim' dimensional descriptors in a query image. - cache_id: If not None, then the VLAD vector is constructed using the residual and labels from this file. Returns: - n_vlas: Normalized VLAD: [num_clusters*desc_dim] """ residuals = self.generate_res_vec(query_descs, cache_id) # Un-normalized VLAD vector: [c*d,] un_vlad = torch.zeros(self.num_clusters * self.desc_dim) if self.vlad_mode == 'hard': # Get labels for assignment of descriptors if cache_id is not None and self.can_use_cache_vlad() \ and os.path.isfile( f"{self.cache_dir}/{cache_id}_l.pt"): labels = torch.load( f"{self.cache_dir}/{cache_id}_l.pt") else: labels = self.kmeans.predict(query_descs) # [q] if cache_id is not None and self.can_use_cache_vlad(): torch.save(labels, f"{self.cache_dir}/{cache_id}_l.pt") # Create VLAD from residuals and labels used_clusters = set(labels.numpy()) for k in used_clusters: # Sum of residuals for the descriptors in the cluster # Shape:[q, c, d] -> [q', d] -> [d] cd_sum = residuals[labels==k,k].sum(dim=0) if self.intra_norm: cd_sum = F.normalize(cd_sum, dim=0) un_vlad[k*self.desc_dim:(k+1)*self.desc_dim] = cd_sum else: # Soft cluster assignment # Cosine similarity: 1 = close, -1 = away if cache_id is not None and self.can_use_cache_vlad() \ and os.path.isfile( f"{self.cache_dir}/{cache_id}_s.pt"): soft_assign = torch.load( f"{self.cache_dir}/{cache_id}_s.pt") else: cos_sims = F.cosine_similarity( # [q, c] ein.rearrange(query_descs, "q d -> q 1 d"), ein.rearrange(self.c_centers, "c d -> 1 c d"), dim=2) soft_assign = F.softmax(self.soft_temp*cos_sims, dim=1) if cache_id is not None and self.can_use_cache_vlad(): torch.save(soft_assign, f"{self.cache_dir}/{cache_id}_s.pt") # Soft assignment scores (as probabilities): [q, c] for k in range(0, self.num_clusters): w = ein.rearrange(soft_assign[:, k], "q -> q 1 1") # Sum of residuals for all descriptors (for cluster k) cd_sum = ein.rearrange(w * residuals, "q c d -> (q c) d").sum(dim=0) # [d] if self.intra_norm: cd_sum = F.normalize(cd_sum, dim=0) un_vlad[k*self.desc_dim:(k+1)*self.desc_dim] = cd_sum # Normalize the VLAD vector n_vlad = F.normalize(un_vlad, dim=0) return n_vlad def generate_multi(self, multi_query: Union[np.ndarray, torch.Tensor, list], cache_ids: Union[List[str], None]=None) \ -> Union[torch.Tensor, list]: """ Given query descriptors from multiple images, generate the VLAD for them. Parameters: - multi_query: Descriptors of shape [n_imgs, n_kpts, d] There are 'n_imgs' and each image has 'n_kpts' keypoints, with 'd' dimensional descriptor each. If a List (can then have different number of keypoints in each image), then the result is also a list. - cache_ids: Cache IDs for the VLAD vectors. If None, then no caching is done (stored or retrieved). If a list, then the length should be 'n_imgs' (one per image). Returns: - multi_res: VLAD descriptors for the queries """ if cache_ids is None: cache_ids = [None] * len(multi_query) res = [self.generate(q, c) \ for (q, c) in zip(multi_query, cache_ids)] try: # Most likely pytorch res = torch.stack(res) except TypeError: try: # Otherwise numpy res = np.stack(res) except TypeError: pass # Let it remain as a list return res def generate_res_vec(self, query_descs: Union[np.ndarray, torch.Tensor], cache_id: Union[str, None]=None) -> torch.Tensor: """ Given the query descriptors, generate a VLAD vector. Call `fit` before using this method. Use this for only single images and with descriptors stacked. Use function `generate_multi` for multiple images. Parameters: - query_descs: Query descriptors of shape [n_q, desc_dim] where 'n_q' is number of 'desc_dim' dimensional descriptors in a query image. - cache_id: If not None, then the VLAD vector is constructed using the residual and labels from this file. Returns: - residuals: Residual vector: shape [n_q, n_c, d] """ assert self.kmeans is not None assert self.c_centers is not None # Compute residuals (all query to cluster): [q, c, d] if cache_id is not None and self.can_use_cache_vlad() and \ os.path.isfile(f"{self.cache_dir}/{cache_id}_r.pt"): residuals = torch.load( f"{self.cache_dir}/{cache_id}_r.pt") else: if type(query_descs) == np.ndarray: query_descs = torch.from_numpy(query_descs)\ .to(torch.float32) if self.norm_descs: query_descs = F.normalize(query_descs) residuals = ein.rearrange(query_descs, "q d -> q 1 d") \ - ein.rearrange(self.c_centers, "c d -> 1 c d") if cache_id is not None and self.can_use_cache_vlad(): cid_dir = f"{self.cache_dir}/"\ f"{os.path.split(cache_id)[0]}" if not os.path.isdir(cid_dir): os.makedirs(cid_dir) print(f"Created directory: {cid_dir}") torch.save(residuals, f"{self.cache_dir}/{cache_id}_r.pt") # print("residuals",residuals.shape) return residuals def generate_multi_res_vec(self, multi_query: Union[np.ndarray, torch.Tensor, list], cache_ids: Union[List[str], None]=None) \ -> Union[torch.Tensor, list]: """ Given query descriptors from multiple images, generate the VLAD for them. Parameters: - multi_query: Descriptors of shape [n_imgs, n_kpts, d] There are 'n_imgs' and each image has 'n_kpts' keypoints, with 'd' dimensional descriptor each. If a List (can then have different number of keypoints in each image), then the result is also a list. - cache_ids: Cache IDs for the VLAD vectors. If None, then no caching is done (stored or retrieved). If a list, then the length should be 'n_imgs' (one per image). Returns: - multi_res: VLAD descriptors for the queries """ if cache_ids is None: cache_ids = [None] * len(multi_query) res = [self.generate_res_vec(q, c) \ for (q, c) in zip(multi_query, cache_ids)] try: # Most likely pytorch res = torch.stack(res) except TypeError: try: # Otherwise numpy res = np.stack(res) except TypeError: pass # Let it remain as a list return res