import gradio as gr from transformers import pipeline import time from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub from fairseq.models.text_to_speech.hub_interface import TTSHubInterface import torch from fairseq.utils import move_to_cuda """ Notes: pip install sentencepiece pip install phonemizer install ffmpeg and add to path Must install e-speak to path solution 1.Download and install the Windows version of espeak: http://espeak.sourceforge.net/download.html 2. set PATH=%PATH%;"C:\Program Files (x86)\eSpeak\command_line"_ 3. Install .msi from https://github.com/espeak-ng/espeak-ng/releases 4.Enter environment variable 1.PHONEMIZER_ESPEAK_LIBRARY="c:\Program Files\eSpeak NG\libespeak-ng.dll" 2.PHONEMIZER_ESPEAK_PATH =“c:\Program Files\eSpeak NG” and Restart your Computer. Run the same command again from the Command Prompt (cmd.exe): """ asr = pipeline("automatic-speech-recognition",model="facebook/wav2vec2-base-960h" ) translation_pipeline = pipeline('translation_en_to_es',model = "Helsinki-NLP/opus-mt-en-es" ) #This model version is built for en- to -fr , less mistakes models, cfg, task = load_model_ensemble_and_task_from_hf_hub( "facebook/tts_transformer-es-css10", arg_overrides={"vocoder": "hifigan", "fp16": False} ) model = models[0] model = model.to(torch.device("cuda:0")) if torch.cuda.is_available() else model TTSHubInterface.update_cfg_with_data_cfg(cfg, task.data_cfg) generator = task.build_generator(models, cfg) def transcribe_translate(audio): time.sleep(3) text_en = asr(audio)["text"] text_fr = translation_pipeline(text_en.lower()) # for some reason all audio converted to all caps and it translates differently??? text_fr = text_fr[0]['translation_text'] # good evening = bonsoir but GOOD EVENING = BONNES SÉANCES . WEIRD sample = TTSHubInterface.get_model_input(task, text_fr) sample = move_to_cuda(sample) if torch.cuda.is_available() else sample wav, rate = TTSHubInterface.get_prediction(task, model, generator, sample) wav = wav.to('cpu') wav = wav.numpy() print(wav.dtype) return text_en,text_fr , (rate,wav) gr.Interface( fn=transcribe_translate, inputs=[ gr.Audio(source="microphone", type="filepath") ], outputs=[ gr.Textbox(label= "English Transcription"), gr.Textbox(label= "Spanish Translation"), gr.Audio(label = "Spanish Audio") ], live=True).launch(share=True)